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1. INTRODUCTION

The LHC will be a very complex environment with most of the interesting physics signals, and their
backgrounds, consisting of multi-parton (and lepton/photon) final states. The ATLAS and CMS exper-
iments will measure these final states with negligible statistical error, even in the early running, and in
many cases with systematic errors smaller than those achieved by the experiments at the Tevatron (see
the contribution in these proceedings from G. Dissertori).The luminosity uncertainty and the uncertainty
in the parton distribution functions (PDFs) can be minimized by the normalization of the physics process
of interest to certain Standard Model (SM) benchmark processes, such asW ,Z, andtt production. Thus,
it is important to have theoretical predictions at the same or better precision as the experimental measure-
ments. In many cases, SM backgrounds to non-SM physics can beextrapolated from background-rich to
signal-rich regions, but a definite determination of the background often requires an accurate knowledge
of the background cross sections. An accurate knowledge of across section requires its calculation to at
least next-to-leading order (NLO).

There are many tools for constructing basically any complexfinal state at the LHC at leading
order (LO). When interfaced to parton shower Monte Carlo programs, such predictions can provide a
qualitative prediction of both inclusive and exclusive final states. There are several different interfaces
between fixed order (both LO and NLO) matrix element and parton shower Monte Carlo programs, with
a benchmark comparison reported in this workshop.

A realistic theoretical description of complex final states, though, exists only at NLO1, with the
current limit of such calculations being2 → 3 and2 → 4 processes (see below). At LO, calculations
often have large scale dependence, a sensitivity to kinematic cuts, and a poor modeling of jet structure.
These deficiencies are most often remedied at NLO. NLO partonlevel calculations can serve as useful
benchmarks by themselves, as well as providing an even more complete event description when inter-
faced with parton shower Monte Carlo programs, or when resummation effects are included. For the
crucial benchmark processes mentioned above (W , Z andtt production), it is useful to go beyond NLO
to NNLO. This has been done forW andZ production, including the calculation of differential rapidity
distributions, and is expected fortt, Z/γ+jet andW+jet production in the near future. Progress towards
tt is reported in the contributions from M. Czakon, A. Mitov andS. Moch.

Even at NLO, the calculation of2 → 3 (and2 → 4) processes is extremely time- and theorist-
consuming, so clear priority needs to be established for those processes most needed for the LHC. In the
2005 Les Houches proceedings, such a realistic NLO wishlistwas established (see Table 1). It is grati-
fying that 3 of the 8 processes (and some which were not listed, for example the one-loop interference
between gluon fusion and weak boson fusion in Higgs plus dijet production [1,2] ), have been calculated
in the intervening two years, but daunting to know that 5 remain and a new process has been added.
As noted in the table, three groups have calculatedWW+jet since Les Houches 2005 and a detailed
comparison of the results is presented in these Les Houches proceedings. In addition to the new NLO
calculation, several processes beyond NLO also have been added to the list.

The new processes that have been added are:

• pp→ bb̄bb̄
There are several interesting physics signatures involving two b-pairs in the final state, such as
bb̄H(→ bb̄) and hidden valley signatures whereZ bosons may decay to multipleb-quarks. Re-
lated to this calculation is the production of 4jets, which is less interesting experimentally, but a
benchmark calculation from a theoretical point of view.

The calculations beyond NLO added to the 2007 version of the list are:

• gg →W ∗W ∗ O(α2α3
s)

This subprocess is important for understanding the backgrounds forH →W (∗)W (∗).

• NNLO pp→ tt̄

1Unless otherwise stated, the terms LO, NLO , NNLO refer to theorder in perturbative QCD only.
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This process is important for the use oftt̄ production at the LHC as a precision benchmark.

• NNLO to weak vector boson fusion (VBF) andZ/γ+jet
VBF production of a Higgs boson is essential for measuring the coupling of the Higgs to bosons.
Z/γ+jet is an essential experimental process that is used to understand the jet energy scale. It will
also be useful for PDF determination.

• In addition, to further reduce the theoretical uncertaintyfor the benchmarkW/Z processes, a
combined NNLO QCD and NLO electroweak (EW) calculation is needed. The cross sections are
known separately to NNLO QCD and to NLO EW, but a combined calculation will improve the
accuracy of the result.
It is also daunting to realize that all of the three finished calculations from the 2005 list remain

private code. To be truly useful, such calculations need to be available in programs accessible to exper-
imenters. Most useful is if the event 4-vectors and event weight outputs can be stored in ROOT n-tuple
format, so that experimental analysis cuts can be easily applied in a manner similar to what is used for
the actual data, and so that results do not have to be re-generated if the analysis cuts change. In such a
format, it is also easy to store not only the nominal event weight, generated with the central PDF of a
NLO set, but also the weights for the set of error PDFs as well.In such a manner, the PDF uncertainty
for any event configuration can be easily established, at theexpense of a larger n-tuple size. Such a
modification is being carried out for the MCFM program.

The calculation of complex multi-parton final states results in the generation of many subtraction
terms for soft and/or collinear real radiation (e.g. Catani-Seymour dipole or antenna subtraction terms),
and each of these in turn requires a counter-event to be generated for the Monte Carlo evaluation of the
matrix element. Thus, for example, in MCFM forW+2jets (and for Higgs+2jets as well), there are 24
counter-term events for each real event. The net result is the requirement of a large amount of CPU
time for computing such cross sections, and the need for manyGB of disk space for storing the results
in ntuples. These requirements will become even more extreme as the complexity of the calculations
increases.

Although most of the NLO calculations for multi-particle production so far are private code tai-
lored to the particular process at hand, there is a clear effort towards more automatisation and making
results available to the community. Several agreements have been made during the workshop to facilitate
comparisons and to make at least certain building blocks entering NLO calculations publicly available:

• Les Houches accord on master integrals: the aim is to have a library of one-loop integrals, finite
as well as divergent ones, which can be used by anybody using amethod which requires scalar
master integrals. It has been agreed that the format for the labelling of the integrals respectively
their arguments should follow the LoopTools [3, 4] conventions, as the infrared finite integrals
are already available in LoopTools. The infrared divergentones recently have been classified and
listed in [5] and can be found in analytic form athttp://qcdloop.fnal.gov. The final aim
is a webpage containing

1. a collection of scalar one-loop integrals in analytic form,

2. benchmark points and comments which kinematic regions have been tested,

3. code to calculate the Laurent series of each integral at points specified by the user,

4. ideally also various codes for the reduction to master integrals.
This webpage is in Wiki format, such that contributions can be added easily. The location of the
webpage is
http://www.ippp.dur.ac.uk/LoopForge/index.php/Main Page, and input is
eagerly awaited.

• If an amplitude is published in an analytic form, numerical values at some benchmark points should
be given to facilitate cross-checks by other groups.
All of the 2005 NLO wishlist processes that have been completed to date relied on traditional

Feynman diagrams for the loop amplitudes. On the other hand,as the complexity of the final-states
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Process Comments
(V ∈ {Z,W, γ})
Calculations completed since Les Houches 2005

1. pp→ V V jet WW jet completed by Dittmaier/Kallweit/Uwer,
Campbell/Ellis/Zanderighi
and Binoth/Karg/Kauer/Sanguinetti (in progress)

2. pp→ Higgs+2jets NLO QCD to thegg channel
completed by Campbell/Ellis/Zanderighi;
NLO QCD+EW to the VBF channel
completed by Ciccolini/Denner/Dittmaier

3. pp→ V V V ZZZ completed by Lazopoulos/Melnikov/Petriello
andWWZ by Hankele/Zeppenfeld

Calculations remaining from Les Houches 2005

4. pp→ tt̄ bb̄ relevant fortt̄H
5. pp→ tt̄+2jets relevant fortt̄H
6. pp→ V V bb̄, relevant for VBF→ H → V V , tt̄H
7. pp→ V V +2jets relevant for VBF→ H → V V

VBF contributions calculated by
(Bozzi/)J̈ager/Oleari/Zeppenfeld

8. pp→ V +3jets various new physics signatures

NLO calculations added to list in 2007

9. pp→ bb̄bb̄ Higgs and new physics signatures

Calculations beyond NLO added in 2007

10. gg →W ∗W ∗ O(α2α3
s) backgrounds to Higgs

11. NNLOpp→ tt̄ normalization of a benchmark process
12. NNLO to VBF andZ/γ+jet Higgs couplings and SM benchmark

Calculations including electroweak effects

13. NNLO QCD+NLO EW forW/Z precision calculation of a SM benchmark

Table 1: The updated experimenter’s wishlist for LHC processes
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grows further, it may prove necessary to adopt as well new approaches and methods. At the 2007 session
of Les Houches, several such approaches were under discussion and development, primarily those based
on the general analytic structure of amplitudes. These methods include recursive techniques at both
tree and loop level; the use of (generalized) unitarity in four dimensions, and in4 − 2ǫ dimensions
(the latter in the context of dimensional regularization);and automated solutions for coefficients of one-
loop integrals, which is also connected with generalized unitarity. Complex final states possess intricate
kinematic regions in which either the amplitude itself becomes singular, or a particular representation of
it becomes numerically unstable. The general identification of such regions, and methods for dealing with
potential instabilities, are also areas of active interest, which are not unrelated to the use of analyticity to
construct loop amplitudes.

Even with the rapid progress we have been seeing in the last few years, there are NLO cross sec-
tions of interest that will not be completed in a timely manner for the LHC. One question is whether
we can provide any approximations/estimates of the uncalculated NLO matrix elements based on expe-
riences with simpler calculations. Table 2 shows the K-factors (NLO/LO) tabulated for some important
processes at the Tevatron and LHC. Of course, K-factors are asimplified way of presenting the effects
of NLO corrections (depending on both scale choice and PDF used for example), but the table provides
some interesting insights. For example, it appears that processes that involve a large color annihilation
(for examplegg → Higgs) tend to have large K-factors for scales typically chosen to evaluate the matrix
elements. The addition of extra legs in the final state tends to result in a smaller K-factor. For example,
the K-factor for Higgs+2jets is smaller than for Higgs+1jet, which in turn is smaller than that for inclu-
sive Higgs production. The same is true for the K-factor forW+2jet being less than that forW+1jet
and the K-factor fortt̄+1jet being less than that fortt̄. Can we generalize this to estimate that the NLO
corrections forW+3jets andtt̄+2jets will be smaller still?

Typical scales TevatronK-factor LHC K-factor

Process µ0 µ1 K(µ0) K(µ1) K′(µ0) K(µ0) K(µ1) K′(µ0)

W mW 2mW 1.33 1.31 1.21 1.15 1.05 1.15
W+1jet mW pjet

T 1.42 1.20 1.43 1.21 1.32 1.42
W+2jets mW pjet

T 1.16 0.91 1.29 0.89 0.88 1.10
WW+jet mW 2mW 1.19 1.37 1.26 1.33 1.40 1.42
tt̄ mt 2mt 1.08 1.31 1.24 1.40 1.59 1.48
tt̄+1jet mt 2mt 1.13 1.43 1.37 0.97 1.29 1.10
bb̄ mb 2mb 1.20 1.21 2.10 0.98 0.84 2.51
Higgs mH pjet

T 2.33 – 2.33 1.72 – 2.32
Higgs via VBF mH pjet

T 1.07 0.97 1.07 1.23 1.34 1.09
Higgs+1jet mH pjet

T 2.02 – 2.13 1.47 – 1.90
Higgs+2jets mH pjet

T – – – 1.15 – –

Table 2:K-factors for various processes at the Tevatron and the LHC calculated using a selection of input parameters. In all

cases, the CTEQ6M PDF set is used at NLO.K uses the CTEQ6L1 set at leading order, whilstK′ uses the same set, CTEQ6M,

as at NLO. For most of the processes listed, jets satisfy the requirementspT > 15 GeV/c and|η| < 2.5 (5.0) at the Tevatron

(LHC). For Higgs+1,2jets, a jet cut of 40 GeV/c and|η| < 4.5 has been applied. A cut ofpjet
T > 20 GeV/c has been applied

for the tt̄+jet process, and a cut ofpjet
T > 50 GeV/c for WW+jet. In theW (Higgs)+2jets process the jets are separated by

∆R > 0.52, whilst the VBF calculations are performed for a Higgs bosonof mass120 GeV. In each case the value of theK-

factor is compared at two often-used scale choices, where the scale indicated is used for both renormalization and factorization

scales.
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The dream of experimentalists is for every NLO parton level calculation to come packaged with a
complete parton shower for the partons produced in the NLO hard scattering process. So far, this exists
for a few not-too-complicated processes, but it is not so easy to arrange this for each given NLO parton
level calculation. To make this process easier, it will be useful to have a very systematic shower with a
simple structure that can be matched to the structure of the NLO calculation. Two programs discussed
at the workshop, and represented by contributions later in this section, may help. One would naturally
match to a NLO calculation with antenna subtractions. The other would naturally match to a NLO
calculation with the widely used Catani-Seymour dipole subtractions.

For many physics processes, though, we will have to continueto rely upon LO parton shower
Monte Carlo programs (interfaced with exact LO matrix element calculations). In many instances, a
large part of the difference between LO and NLO predictions is the use of LO PDFs for the former and
NLO PDFs for the latter. Nominally, the choice indicated above is correct, but LO PDFs can differ from
their NLO counterparts by a significant amount due to the influence of DIS data on the global fits. The
LO PDFs often are changed in such a manner as to lead to significant deviations of LO predictions with
LO PDFs from NLO predictions with NLO PDFs, in some kinematicregions. One solution that has been
discussed is the use of NLO PDFs with LO Monte Carlos. This solves the problem mentioned above,
but can lead to additional problems, for example with predictions for low mass objects at the LHC. The
solution adopted by several groups, and presented at this workshop, is the development ofmodified LO
PDFs, including the best features (for use in LO Monte Carlos) of the LO and NLO PDFs. It will be
useful/important to tabulate the K-factors using these modified LO PDFs.

For the maximal exploitation of physics, there are also requirements on the experimental side. We
suggest that cross sections at the LHC should be quoted at thehadron level, and where possible with
the estimated parton-to-hadron corrections, so that any theoretical prediction (parton or hadron level)
can easily be compared after the fact to the archived data [6]. Also, the experimental data needs to be
quoted only for the range of measurement, rather than extrapolated to the full cross section; for example,
measurements ofW → eν should be quoted for the range of electron transverse momentum and rapidity
and of missing transverse energy actually used in the triggering and analysis, rather than performing an
extrapolation to the fullW cross sections. Such recommendations were the exception (CDF W+jets)
rather than the rule at the Tevatron and a clear model needs tobe set for the LHC.

The structure of this report is as follows. First a review on expected cross sections and uncertain-
ties at the LHC from an experimental point of view is given to set the stage. Then various new approaches
to the calculation of tree-level and one-loop multi-leg amplitudes are presented, followed by a section
on “improvements on standard techniques”, with particularemphasis on the analysis of singularities
which can create numerical instabilities when integratingmulti-particle one-loop amplitudes. Section
III contains various results, first a tuned comparison of different NLO calculations forpp → WW+jet,
then results pointing towards thett̄ cross section at NNLO, and finally NNLO predictions for hadronic
event shapes ine+e− annihilation. The latter is not of direct relevance for the LHC, but is a benchmark
calculation in what concerns the construction of NNLO MonteCarlo programs in the presence of a com-
plicated infrared singularity structure. The report is closed by a section on parton showers, addressing
the matching of parton showers with multi-leg LO matrix elements as well as the matching with partonic
NLO calculations, which is of primordial interest at present and future TeV colliders.

2. MEASUREMENTS OF HARD PROCESSES AT THE LHC 2

2.1 Introduction

We are approaching the start-up of the world’s most powerfulparticle accelerator ever built. It is expected
that CERN’s Large Hadron Collider (LHC) will start its operation in 2008. Thanks to the unprecedented
energies and luminosities, it will give particle physicists the possibility to explore the TeV energy range

2Contributed by: G. Dissertori
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for the first time and hopefully discover new phenomena, which go beyond the so successful Standard
Model (SM). Among the most prominent new physics scenarios are the appearance of one (or several)
Higgs bosons, of supersymmetric particles and of signatures for the existence of extra spatial dimensions.

However, before entering the discovery regime, considerable efforts will be invested in the mea-
surements of SM processes. We are sure that these have to be seen and thus they can serve as a proof for
a working detector (a necessary requirement before any claim of discovery is made). Indeed, some of
the SM processes are also excellent tools to calibrate partsof the detector. However, such measurements
are also interesting in their own right. We will be able to challenge the SM predictions at unprecedented
energy and momentum transfer scales, by measuring cross sections and event features for minimum-bias
events, jet production, W and Z production with their leptonic decays, as well as top quark production.
This will allow to check the validity of the Monte Carlo generators, both at the highest energy scales
and at small momentum transfers, such as in models for the omnipresent underlying event. The parton
distribution functions (pdfs) can be further constrained or measured for the first time in kinematic ranges
not accessible at HERA. Important tools for pdf studies willbe jet+photon production or Drell-Yan pro-
cesses. Finally, SM processes such as W/Z+jets, multi-jet and top pair production will be important
backgrounds to a large number of searches for new physics andtherefore have to be understood in detail.

The very early goals to be pursued by the experiments, once the first data are on tape, are three-
fold : (a) It will be of utmost importance to commission and calibrate the detectors in situ, with physics
processes as outlined below. The trigger performance has tobe understood in as unbiased a manner as
possible, by analyzing the trigger rates of minimum-bias events, jet events for various thresholds, single
and di-lepton as well as single and di-photon events. (b) It will be necessary to measure the main SM
processes and (c) prepare the road for possible discoveries. It is instructive to recall the event statistics
collected for different types of processes. For an integrated luminosity of1 fb−1 per experiment, we
expect about107 W → eν events on tape, a factor of ten lessZ → e+e− and some105 tt̄ → µ+X events.
If a trigger bandwidth of about 10% is assumed for QCD jets with transverse momentumpT > 150 GeV,
bb̄ → µ+X and minimum-bias events, we will write about106 events to tape, for each of these channels.
Also the existence of supersymmetric particles, for example gluinos withmg̃ ≈ 1 TeV, or a Higgs with
mH ≈ 130 GeV, would result in sizeable event statistics (102 − 103). This means that the statistical
uncertainties will be negligible after a few days, for most of the physics cases. The analysis results
will be dominated by systematic uncertainties, be it the detailed understanding of the detector response,
theoretical uncertainties or the uncertainty from the luminosity measurements.

Concerning the experimentally achievable precision, it isworth noting that the numerous quality
checks during construction and beam tests of series detector modules let us conclude that the detectors as
built should give a good starting-point performance. Furthermore, cosmic ray muons, beam-gas interac-
tions and beam halo muons are available as commissioning andcalibration tools already before the first
real proton-proton collisions. Finally, with such first collisions in hand, the trigger and data acquisition
systems will be timed-in, the data coherence checked, sub-systems synchronized and reconstruction al-
gorithms debugged and calibrated. The electromagnetic andhadronic calorimeters will be calibrated with
first physics events. For example, the initial crystal inter-calibration precision of about 4% for the CMS
ECAL will be improved to about 2% by using theφ-symmetry of the energy deposition in minimum-bias
and jet events. Later the ultimate precision (≈ 0.5%) and the absolute calibration will be obtained using
Z → e+e− decays and theE/p measurements for isolated electrons, such as inW → eν decays [7].
The latter requires a well understood tracking system. The uniformity of the hadronic calorimeters can
be checked with single pions and jets. In order to obtain the jet energy scale (JES) to a few per-cent
precision or better, physics processes such asγ + jet, Z(→ ℓℓ) + jet or W → 2 jets in top pair events
will be analyzed. Finally, the tracker and muon system alignment will be carried out with generic tracks,
isolated muons orZ → µ+µ− decays. Regarding all these calibration and alignment efforts, the ultimate
statistical precision should be achieved very quickly in most cases. Then systematic effects have to be
faced, which, eg., implies that pushing the trackerRφ alignment from an initial100µm to about10µm
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might involve at least one year of data taking. More detailedreviews of the initial detectors and their
performance can be found in Refs. [8] and [9].

The anticipated detector performance leads to the following estimates for the reconstruction pre-
cision of the most important physics objects :

• Isolated electrons and photons can be reconstructed with a relative energy resolution characterized
by a stochastic term (which is proportional to1/

√
E) of a few per-cent and an aimed-for 0.5%

constant term. Typically isolation requirements are defined by putting a cone around the elec-
tron/photon and counting the additional electromagnetic and hadronic energy and/or track trans-
verse momentum within this cone. The optimal cone size inη−φ space3 depends on the particular
analysis and event topology. For typical acceptance cuts, such as a transverse momentum above
10-20 GeV and|η| < 2.5, electrons and photons can be expected to be reconstructed with ex-
cellent angular resolution, high efficiency (≥ 90%) and small backgrounds. Again, the precise
values depend very much on the final state topology and the corresponding tightness of the selec-
tion cuts. Most importantly, the systematic uncertainty onthe reconstruction efficiency should be
controllable at the 1-2% level, using in-situ measurementssuchZ → e+e− decays, with one of
the electrons serving as tag lepton and the other one as probeobject for which the efficiency is
determined.

• Isolated muons, with similar acceptance cuts as mentioned above for electrons, should be recon-
structed with a relative transverse momentum resolution of1 - 5% and excellent angular resolution
up to several hundreds of GeV. Again, a systematic uncertainty on the reconstruction efficiency of
1-2% appears to be achievable.

• Hadronic jets will be reconstructed up to pseudo-rapidities of 4.5 - 5, with good angular resolu-
tion. The energy resolution depends rather strongly on the specific calorimeter performance. For
example, in the case of ATLAS (CMS) a stochastic term of the order of 50 - 60% (100 - 150%)
is to be expected when energy deposits in projective calorimeter towers are used for the jet clus-
tering procedure. Important improvements on the CMS jet energy resolution are expected from
new approaches such as particle flow algorithms. Well above the trigger thresholds jets will be re-
constructed with very high efficiency; the challenge is the understanding of the efficiency turn-on
curves. In contrast to leptons, for jets the experimental systematic uncertainties are much more
sizeable and difficult to control. A more detailed discussion will follow below.
A further important question is the lowestpT threshold above which jets can be reconstructed
reliably. Contrary to the naive expectation that only high-pT objects (around 100 GeV and higher)
are relevant, it turns out that many physics channels require jets to be reconstructed with rather
low transverse momentum of∼ 20 − 30 GeV. One reason for this is the importance of jet veto
requirements in searches for new physics, such as in theH → WW∗ → 2ℓ 2ν channel, where
a jet veto is necessary to reduce the top background. The experimental difficulties related to the
understanding of the low-pT jet response4, the thresholds due to noise suppression, the impact of
the underlying event and additional pile-up events and ultimately the knowledge of the JES lead to
the conclusion that it will be extremely challenging, if notimpossible, to reliably reconstruct jets
below apT of 30 GeV. In addition, also the theoretical predictions arechallenged by very low-pT

effects, as for example induced by jet veto requirements. Here fixed-order calculations may have
to be supplemented by resummations of large logarithms.

• Finally, the missing transverse energy will be a very important ”indirect” observable, which is
constructed from measurements of other quantities, such asall calorimeter energy deposits. Many
searches for new physics, such as Supersymmetry, rely very much on this observable. However,
it turns out that it is also an extremely difficult quantity tomeasure, since it is sensitive to almost
every detail of the detector performance. Here it is even more difficult to give estimates of the

3Hereη denotes the pseudo-rapidity andφ the azimuthal angle around the beam pipe.
4The jet response is defined as the ratio of the reconstructed and the “true” jet momentum.
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expected systematic uncertainties. Also, the reconstruction performance depends very much on
the details of the particular final state, such as the number of jets and/or leptons in the event, the
existence of “true” missing energy, e.g. from neutrinos, the amount of pile-up events and in general
the overall transverse energy deposited in the detector. The very first data will be of paramount
importance for a timely understanding of this quantity.

More detailed discussions of the expected detector and reconstruction performance can be found in recent
reviews ( [8], [9]), for ATLAS in Ref. [10] and for CMS in its Physics Technical Design Reports (PTDR),
Vol. 1 [7] and Vol. 2 [11].

In the following I will concentrate on the early physics reach of the LHC experiments, i.e. on
measurements to be performed on the first few hundred pb−1 up to 1 fb−1 of integrated luminosity. Many
reviews exist on this topic, such as Refs. [9,12–14] to mention only a few. Most of the results presented
here are taken from the CMS PTDR Vol. 2 [11], because it represents the most recent comprehensive
overview compiled by one of the LHC experiments.

2.2 Jet production

Because of its extremely large cross section, the inclusivedijet production (pp→ 2 jets + anything)
completely dominates over all other expected LHC processeswith large momentum transfer. At low-
est order in perturbative Quantum Chromodynamics (QCD), itis described as a2 → 2 scattering of
partons (quarks and gluons), with only partons in the initial, intermediate and final state. Depending
on the exchanged transverse momentum (or generally the energy scale of the scattering process), the
final state will consist of more or less energetic ”jets” which arise from the fragmentation of the outgo-
ing partons. Indeed, soft scattering processes, which givethe largest contribution to the total inelastic
proton-proton cross section, are most likely, leading to final states with hundreds of soft (i.e. below a few
GeV) charged and neutral hadrons, uniformly distributed over most of the experimental acceptance in
pseudo-rapidity. Since these are the most likely processesto occur, they are triggered on with the least
stringent requirements and thus called ”minimum-bias” events. For the same reason they also represent
the typical pile-up events which can occur simultaneously with other triggered proton-proton collisions.
Therefore very early measurements of the production rates5 and the charged particle distributions will be
extremely important, in particular for the tuning of the widely used Monte Carlo generators. Here I will
not discuss further this class of measurements, but rather concentrate on the parton scattering at large
transverse momentum. Examples of envisaged studies of minimum-bias events can be found in [11].

For outgoing partons with transverse momentum well above the QCD fragmentation scale (Λ ∼
1 GeV) the picture of jet production arises, namely well collimated bundles of particles, leading to
isolated clusters of deposited energy in the calorimeters.Several algorithms exist for the clustering
of the final state objects (simulated particles, calorimeter towers, charged tracks) into jets with a well
defined four-momentum, which in the optimal case closely matches the four-momentum of the original
scattered parton. Examples of commonly used prescriptionsare the Iterative Cone, Midpoint Cone,
SISCone andkT algorithms. In particular, the latter two algorithms recently receive a lot of theoretical
and experimental attention, mainly because of their property of being infrared and collinear safe to all
orders of perturbation theory. A detailed discussion of those jet algorithms is given elsewhere in these
proceedings, as well as in [15–17] and references therein.

For the measurement of the inclusive jet cross section we simply count the number of jets inside
a fixed pseudo-rapidity region as a function of jetpT . For a second typical measurement, the dijet cross
section, events are selected in which the two highestpT jets, the leading jets, are both inside a specified
pseudo-rapidity region and counted as a function of the dijet (invariant) mass. Both cases are inclusive
processes dominated by the2 → 2 QCD scattering of partons. The distinction between inclusive jets and

5Currently the extrapolations from the TEVATRON up to the LHCenergies suffer from large uncertainties. For example,
various Monte Carlo generators predict charged track multiplicities which differ by more than 30%.
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dijets is only in a different way of measuring the same process. For a common choice of theη region,
events selected by the dijet analysis are a subset of the events selected by the inclusive jet analysis, but
the number of events in the two analyses coming from QCD is expected to be close at highpT . The
steeply falling cross sections are shown in Fig. 1. For the inclusive jet case, the spectrum roughly follows
a power law, however, with increasing power for increasingpT , ie., the power increases from about 6 at
pT = 150 GeV to about 13 atpT = 3 TeV and keeps on increasing with jetpT .

Fig. 1: Inclusive jet (left) and dijet (right) cross sectionmeasurements as foreseen by CMS [11]. The central cross section

values are taken from a leading-order calculation in dependence of the transverse momenta of the hard interaction. The insert

on the right plot indicates various trigger paths.

It can be seen that even for very small integrated luminosities the statistical uncertainties will be
negligible, up to very high jet momenta. Thus the TEVATRON reach in terms of highest momenta and
therefore sensitivity to new physics, such as contact interactions or heavy resonances, will be quickly
surpassed. For 1 fb−1, the inclusive cross section for central jet production (ie. jet pseudo-rapidities
below∼ 1) will be known statistically to better than 1% up to apT of 1 TeV, and the statistical errors on
the dijet cross section will be below 5% up to dijet masses of 3TeV.

The real challenge for these measurements will be the determination and control of the jet energy
scale. As mentioned above, the cross sections are steeply falling as a function of jetpT . Therefore any
relative uncertainty on the jetpT will translate into an-times larger relative uncertainty on the cross
section, wheren indicates the power of the spectrum in a specifiedpT region, ie.dσ/dpT ∝ p−n

T . For
example, a5% uncertainty on the energy scale for jets around 100-200 GeV of transverse momentum
induces a30% uncertainty on the inclusive jet cross section. This is alsoshown in Fig. 2 (left), here
for the case of a 3% JES uncertainty. As a comparison, in Fig. 2(right) we see the expected theoretical
uncertainties on the inclusive jet cross section from the propagation of pdf uncertainties. These are below
the 10% level up to a jetpT of 1 TeV, thus much smaller than the experimental systematics from the JES.
Therefore it is obvious that a measurement of the inclusive jet cross section will not allow to constrain the
pdfs, unless the JES is known to 2% or better. This is definitely beyond reach for the early phase of the
LHC, and might remain a huge challenge even later. Furthermore, because of these large experimental
uncertainties, it might turn out that the currently known next-to-leading order (NLO) perturbative QCD
calculation of the hard scattering process is precise enough for a comparison to data. However, with
better experimental control at a later stage and/or other definitions of observables (see below) the need
for going to next-to-next-to-leading order (NNLO) might arise.

Obviously, the knowledge of the JES also has a strong impact on the achievable precision of the
dijet cross section measurement, as shown in Fig. 3 (left). However, the problem can be avoided by
performing relative instead of absolute cross section measurements. A well suited observable is the dijet
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Fig. 2: Left: Relative systematic uncertainties of the inclusive jet cross sections for thekT algorithm versus jetpT due to

a change in the JES of±3% for three bins in rapidity,y. The error bars indicate the statistical uncertainty. Right: relative

uncertainties propagated from the error sets of the CTEQ6M [18] pdfs, for the same regions in rapidity. Plots taken from [11].

ratio N(|η| < |ηin|)/N(|ηin| < |η| < |ηout|), ie., the ratio of the number of dijet events within an
inner region|η| < |ηin| to the number of dijet events within an outer region|ηin| < |η| < |ηout|. Both
leading jets of the dijet event must satisfy the|η| cuts. In Ref. [11] the values chosen wereηin = 0.5
andηout = 1, whereas in a recent update [19] of the CMS studies on inclusive and dijet production
they have been increased to 0.7 and 1.3, respectively. The dijet ratio has two interesting features. First,
it is very sensitive to new physics, such as contact interactions or the production of a heavy resonance,
because those lead to jets at more central rapidities than ingenuine QCD dijet events. Second, in the
ratio we can expect many systematic uncertainties to cancel. For example, the luminosity uncertainty
completely disappears in the ratio. More importantly, alsothe JES uncertainty is strongly reduced, since
the dijet ratio is sensitive only to the relative knowledge of the scale as a function of rapidity, but not to
the absolute scale any more. This is well illustrated in Fig.3 (right), where the JES uncertainty is shown
to be reduced to about 3%. In this figure also the sensitivity to new contact interactions at various scales
is indicated. Hence we have a nice example of a ratio measurement where systematic uncertainties are
reduced. Having an observable in hand with experimental systematic uncertainties at the level of 5% or
less, it might become relevant to obtain a NNLO prediction for jet production.

As we have seen above, the JES is the dominant source of uncertainty in jet cross section measure-
ments. Obviously, it is also important for many other analyses and searches which involve jet final states
and possibly invariant mass reconstructions with jets. Therefore major efforts are devoted by the ex-
perimental collaborations to prepare the tools for obtaining JES corrections, both from the Monte Carlo
simulations and, more importantly, from the data themselves. Currently approaches are followed which
are inspired by the TEVATRON experience [20,21]. The correction procedure is split into several steps,
such as offset corrections (noise, thresholds, pile-up), relative corrections as a function ofη, absolute
corrections within a restrictedη-region, corrections to the parton level, flavour-specific corrections etc.
At the LHC startup we will have to rely on Monte Carlo corrections only, but with the first data coming
in it will be possible to switch to data-driven corrections.At a later stage, after a lot of effort will have
gone into the careful tuning of the Monte Carlo simulations,it might be feasible to use Monte Carlo
corrections again. A rough estimate for the early JES uncertainty evolution in CMS is 10% at start-up,
7% after 100 pb−1 and 5% after 1 fb−1 [22]. Certainly it will be difficult and require time to obtain a
detailed understanding of the non-Gaussian tails in the jetenergy resolution.
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Fig. 3: Left : Systematic uncertainty on the dijet cross section due to JES (solid curve), parton distributions (dashed curve) and

calorimeter energy andη resolution (dotted curve), compared to the statistical uncertainties for 10 fb−1 (errorbars). Right :

Systematic bounds on the dijet ratio from uncertainties in the relative JES (dashed curve), parton distributions (dotted curve)

and calorimeter energy andη resolution (dot dashed curve), compared to the expectations of QCD and three contact interaction

scales (solid line and curves). Plots taken from [11].

Concerning data-driven JES corrections, one of the best channels isγ+jet production. At leading
order, the photon and the jet are produced back-to-back, thus the precisely measured photon energy can
be used to balance the jet energy. Real life is more difficult,mainly because of additional QCD radiation
and the large background from jets faking a photon. These canbe suppressed very strongly with tight
selection and isolation cuts (eg., no additional third jet with a transverse energy beyond a certain threshold
and tight requirements on additional charged and neutral energy in a cone around the photon). The need
to understand well the photon-faking jet background and thephoton fragmentation is avoided by using
the channel Z(→ ℓℓ)+jet, with electrons or muons, however, at the price of a lowercross section.

Besides being a tool for obtaining JES corrections, bothγ+jet and Z + jet processes will also be
important handles for constraining the gluon pdf. It appears feasible to probe the gluon pdf at Bjorken-x
values between about 0.0005 and 0.2 with a few per-cent statistical errors after only 1 fb−1 of integrated
luminosity [23]. Thex value is well determined using the lepton or photon kinematics only, thus it does
not suffer from the less precise measurement of the jet momentum. Of course, in order to consistently
constrain NNLO pdf sets (which should become more and more relevant with time), a NNLO calculation
of the hard scattering part of the process is needed. Whereasthis appears beyond reach for theγ+jet
case, the Z+jet process might be tractable within the not-too-far future. As discussed below, Z+jet (as
well as W+jet) production is a very important background to many searches, therefore having a NNLO
prediction should be very valuable, also as a benchmark for Monte Carlo generators which combine
leading order (LO) and/or NLO matrix elements with parton shower models.

2.3 Vector boson production

The production of vector bosons (W and Z), triggered on with their subsequent leptonic decays, will be
among the most important and most precise tests of the SM at the LHC. The leptonic channels, mainly
electrons and muons, can be reconstructed very cleanly, at high statistics, with excellent resolution and
efficiency and very small backgrounds. At the same time, the theoretical predictions are known to high
accuracy, as discussed in more detail below. This precisionwill be useful for constraining pdfs, by
measuring the rapidity dependence of the Z production crosssection, in particular when going to large
rapidities and thus probing lowx values. As proposed in [24], this process will serve as a standard candle
for determining to high precision (at the few per-cent level) the proton-proton luminosity or alternatively
the parton-parton luminosity. Finally, it will be attempted to improve on the current precision of the W
mass. Besides that, W and Z production will be an important experimenter’s tool. As mentioned already
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earlier, Z and W decays to leptons will be used to understand and calibrate various sub-detectors, measure
the lepton reconstruction efficiencies and control even themissing transverse energy measurement.

Below I will first discuss the inclusive case, concentratingon resonant production. Then I will
highlight some issues for the W and Z production in association with jets. Although being highly in-
teresting processes, di-boson production will not be discussed here, since for integrated luminosities up
to 1 fb−1 the statistical precision will be the limiting factor for these measurements and only allow first
proofs of existence and rough validations of the model expectations.

2.3.1 Inclusive W and Z production

Inclusive W and Z production currently is and probably will remain the theoretically best known process
at the LHC. Predictions are available at NNLO in perturbative QCD, fully differential in the vector
boson and even the lepton momenta [25]. Figure 4 (left) showsthe Z rapidity distribution at various
orders in perturbation theory. We see that the shape stabilizes when going to higher orders and that the
NNLO prediction nicely falls within the uncertainty band ofthe NLO expansion, giving confidence in
the good convergence of the perturbation series. More importantly, the renormalization scale uncertainty
is strongly reduced at NNLO, to a level of about 1% for Z rapidities below 3. A renormalization scale
uncertainty even below 1% can be obtained for ratio observables such asσ(W+)/σ(W−) andσ(W)/σ(Z),
possibly as a function of rapidity. Again, ratio measurements are interesting also from the experimental
point of few, since many systematic uncertainties cancel completely or to a large extend. The prospect
of a precise measurement and knowing the hard scattering part of the process so well means that we
have a tool for precisely constraining pdfs (or couplings and masses, in a more general sense). Indeed,
when taking the full theoretical prediction for the W and Z production cross section, ie., the convolution
of pdfs and hard scattering part, its uncertainty is dominated by the limited knowledge of the pdfs,
currently estimated to be around 5-7% [26, 27]. This will then also limit the proton-proton luminosity
to a precision of this size, unless the pdfs are further constrained, mainly by the rapidity dependence of
the cross section, as for example shown in Ref. [26]. It is worth noting that at this level of precision also
electro-weak corrections have to be considered [28–30].

An important point to make in this context is the importance of having differential cross section
predictions. If we take resonant W and Z production at central vector boson rapidity, we probex values
of around 0.006, a region rather well constrained by the current pdf fits. However, for larger rapidities
we probe more and more the smallx region, which is less well known, eg., at leading order and for a
Z rapidity of 3 we need (anti-)quark pdfs atx = 0.12 andx = 0.0003. Experimentally, because of
the detector acceptance, we can only access a limited sub-region of the full phase space. This means
that when measuring a total cross section, we have to extrapolate the measurement to the full accep-
tance (eg., full rapidity), which introduces a model dependence, especially on the poorly known low-x
region. On the other hand, having differential predictions, we can compute exactly the same quantity as
we measure, thus eliminating any extrapolation uncertainty. Similarly, for constraining NLO (NNLO)
pdfs, exactly the same acceptance cuts (on the leptons) as inthe data can now be applied on the avail-
able NLO (NNLO) predictions. Of course, with more and more differential higher-order predictions
becoming available, this kind of argument applies to any cross section measurement (and/or deduced
determination of physics quantities such as couplings, masses, pdfs), namely that we should compare
the measurements and predictions for the experimentally accessible acceptance and avoid un-necessary
extrapolations, which will not teach us anything new and only introduce additional uncertainties.

As mentioned above, the experimental reconstruction of W and Z production is rather straight
forward. Leptons are required to have a minimumpT of about 20 GeV, within a pseudo-rapidity of 2.5
(cf. Fig. 4, right). In the Z case the mass peak allows for further event selections and background estima-
tions. However, the neutrino in the W decay leads to missing energy, which obviously is reconstructed
less precisely. Instead of an invariant mass peak only the transverse W mass can be reconstructed, with
larger backgrounds than for the Z. Here it is interesting to mention that a jet veto can help to control bet-
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Fig. 4: Left : QCD predictions at various orders of perturbation theory for the Z rapidity distribution at the LHC. The shaded

bands indicate the renormalization scale uncertainty. Plot taken from [31]. Right : Generated rapidity distribution for all Z

candidates and for those where both electrons were generated within the geometrical acceptance of the CMS electromagnetic

calorimeter (b=barrel, e=endcap). Also shown is the rapidity distribution of the finally accepted Z events. Plot taken from [11].

ter the QCD backgrounds and to improve the resolution of the missing transverse energy reconstruction.
However, a jet veto introduces sensitivity to low-pT QCD radiation, thus comparing the measurement to
a calculation for the same acceptance cuts will only be meaningful if soft-pT resummation effects are
taken into account in the predictions. Fortunately, with the Z+jet process we have an experimental han-
dle to study these issues rather precisely (see also below),since the radiation pattern in W+jet and Z+jet
events is very similar. In Ref. [11] it has been shown that reconstruction efficiencies and ultimately cross
section measurements with systematic uncertainties around 2% (or better) should be possible, excluding
the luminosity uncertainty.

2.3.2 W/Z+jets production

Vector bosons produced in association with jets lead to finalstates with high-pT leptons, jets and possibly
missing transverse energy. Such a topology is also expectedfor many searches, in particular for squark
and gluino production and subsequent cascade decays. Obviously it will be important to understand
these SM processes as quickly as possible and validate the available Monte Carlo generators, which typ-
ically combine LO matrix elements with parton showers. A standard observable will be the W/Z cross
section as a function of the associated leading jet transverse momentum or the number of additional jets.
Obviously, such measurements will suffer from the same JES uncertainties as the QCD measurements
discussed above, and thus constitute only limited calibration tools during the early data taking. The prob-
lem can be reduced by defining clever ratios of cross sections, involving different vector bosons and/or
number of additional jets, or by normalizing the predictions to the data in limited regions of the phase
space (eg. for small jet multiplicity and extrapolating to larger multiplicities). A completely different
approach is to take a more inclusive look at this process, in the sense that the Z transverse momen-
tum is measured from the lepton kinematics, which is possible at high statistical and, more importantly,
high experimental accuracy (cf. Fig. 5). This distributioncan be understood as the convolution of the
Z+0/1/2/. . . jets distributions, therefore any model intended to describe Z+jets production has necessarily
to reproduce the ZpT distribution over its full range. As mentioned above, in this context it would be
highly desirable to have a NNLO prediction, possibly matched with a resummation calculation, for a
comparison to the precise data and as benchmark for other approximations, implemented in Monte Carlo
simulations.
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Fig. 5: Expected transverse momentum distribution for Z production at the LHC, for apT range up to 20 GeV (left) and 100

GeV (right). ThepT of the Z is reconstructed from the lepton kinematics. The fluctuations in the spectra indicate the statistical

precision achievable with 1 fb−1 of integrated luminosity. Plots taken from [26].

2.4 Top pair production

The top quark is produced very abundantly at the LHC. With 1 fb−1 of integrated luminosity, we should
already have a couple of thousand clean signal events on tapein the di-lepton channel, and a factor of
10 more in the single lepton channel (lepton+jets channel) [11]. The physics case for the study of top
production is very rich and can not be discussed in detail here. For example, a recent review can be found
in Ref. [32]. Combining many different channels, a top mass measurement with a precision of 1 GeV
might be achieved, which together with a precise W mass measurement constitutes an important indirect
constraint of SM predictions and its extensions. The production cross section (for single and top-pair
production) will be an important measurement, again for testing the SM predictions and because top
production is a copious background to a large number of new physics searches. In the single muon+X
channel, the top-pair production cross section will soon (ie. with about 1 fb−1) be measured with a
statistical precision of 1%. The total uncertainty of 10-15% (excluding the luminosity uncertainty) will
be dominated by systematics, most notably due to the knowledge of the b-tagging efficiency. At the
moment it seems difficult to reduce this uncertainty to below10% [11], even for much larger integrated
luminosities. Therefore this should be seen as a benchmark value to be challenged by the theoretical
predictions. Efforts are under way to compute the NNLO corrections to top-pair production and it will
be interesting to compare the ultimately achievable theoretical precision to the experimental accuracy.
Precise higher order predictions (possibly including resummation), both for inclusive top and top+jets
production, should also be very valuable for obtaining precise background estimates, such as in Higgs
searches. Although it will be tried to calibrate the backgrounds with the data themselves, by using
background-enriched samples for the normalization [33, 34], the theoretical predictions are still needed
for the extrapolation from the background-rich to the signal-enriched regions of phase space. A good
theoretical precision will lead to reduced systematics on the background, which will be most relevant for
searches with small signal-to-noise ratios. It is worth mentioning that for the measurement of the b-jet
cross section similar observations hold as for the top, ie.,the statistical error will soon be negligible,
whereas the systematic uncertainty is expected to be around15-20%, dominated by the JES.

Finally, top production will become an extremely valuable calibration tool. The mass peak can
already be reconstructed with much less than 1 fb−1, even without b-tagging requirements. With a clean
sample in hand, it can be exploited for controlling the b-tagging efficiency and serve as a closure test for
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the JES corrections determined from other processes. Concerning the JES, the mass of the hadronically
decaying W serves as a calibration handle. CMS expects that for intermediate jetpT values this sample
could lead to JES uncertainties around or below 3% [11].

2.5 Conclusions

I have summarized the experimental and theoretical prospects for some of the most important measure-
ments of SM processes at the LHC, namely jet, vector boson andtop production. The early benchmark
measurements will include the inclusive jet cross section,the dijet cross section and the dijet ratio, pho-
ton/Z plus jet production, the Z rapidity distribution, ratios of W and Z cross sections, the Z transverse
momentum distribution and top pair production. I have indicated the expected uncertainties of the mea-
surements and shown how these processes serve as tools for the understanding of the detector, for the
control of backgrounds and for the validation and tuning of Monte Carlo generators. Particularly inter-
esting are ratio measurements, because otherwise important systematic uncertainties cancel out in this
case. With differential predictions at higher order in perturbation theory in hand, I have highlighted the
importance of comparing theory and experiment for the same acceptance cuts, thus avoiding extrapola-
tion errors. It is important to have (differential) NLO predictions, possibly combined with resummation
calculations such as implemented in the Monte Carlo generator MC@NLO [35, 36], for as many pro-
cesses as possible. For the cases where this appears to be difficult to achieve, LO plus parton shower
approaches might still be very valuable tools. However, higher order predictions, up to NNLO, should
be aimed for as benchmarks, at least in a few cases. I have identified dijet, Z+jet and top production as
most interesting cases for investing the efforts towards NNLO calculations.
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Part I

NEW APPROACHES

3. ON-SHELL RECURSION RELATIONS 6

3.1 Introduction

The efficient calculation of scattering amplitudes with many external legs is a challenging task and
needed for phenomenological studies at TeV colliders. In the past years, various new methods for
efficient calculations in QCD have been introduced, originally motivated by the relation of QCD am-
plitudes to twistor string theory [37]. These methods include the diagrammatic rules of Cachazo, Svrček
and Witten (CSW) [38], where tree level QCD amplitudes are constructed from vertices that are off-
shell continuations of maximal helicity violating (MHV) amplitudes [39], and the recursion relations of
Britto, Cachazo, Feng and Witten (BCFW) [40, 41] that construct scattering amplitudes from on-shell
amplitudes with external momenta shifted into the complex plane. These developments have triggered
significant research and numerous applications towards Born amplitudes in QCD [42–63]. In addition,
when combined with the unitarity method [64,65] the recursion relations have proven very useful for one-
loop calculations in QCD [66–95]. Here, we would like to review the basics of the on-shell recursion
relations for Born QCD amplitudes and the proof of its validity.

6Contributed by: C. Schwinn, S. Weinzierl
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3.2 Helicity amplitudes and colour decomposition

It is a well-known fact that the complexity of a calculation based on Feynman diagrams grows factorially
with the number of external particles. In order to keep the size of intermediate expressions under control,
a divide-and-conquer strategy has been proven useful: One divides the quantity to be calculated into
smaller pieces and calculates the small pieces separately.

One first observes that it is not necessary to square the amplitude and sum over the spins and
helicities analytically. It is sufficient to do this numerically. This avoids obtainingO(N2) terms from an
expression withO(N) terms. The individual amplitudes have to be calculated in a helicity or spin basis.
This is straightforward for massless fermions. The two-component Weyl spinors provide a convenient
basis:

|p±〉 =
1

2
(1 ± γ5)u(p). (1)

In the literature there are different notations for Weyl spinors. Apart from the bra-ket-notation there is
the notation with dotted and un-dotted indices: The relation between the two notations is the following:

|p+〉 = pB , 〈p+ | = pȦ, |p−〉 = pḂ, 〈p− | = pA. (2)

Spinor products are defined as

〈pq〉 = 〈p− |q+〉, [pq] = 〈p+ |q−〉, (3)

and take value in the complex numbers. It was a major break-through, when it was realised that also
gluon polarisation vectors can be expressed in terms of two-component Weyl spinors [96–102]. The
polarisation vectors of external gluons can be chosen as

ε+µ (k, q) =
〈q − |γµ|k−〉√

2〈q − |k+〉
, ε−µ (k, q) =

〈q + |γµ|k+〉√
2〈k + |q−〉

, (4)

wherek is the momentum of the gluon andq is an arbitrary light-like reference momentum. The depen-
dence on the arbitrary reference momentumq will drop out in gauge invariant quantities.

The second observation is related to the fact, that individual helicity amplitudes can be decom-
posed into group-theoretical factors (carrying the colourstructures) multiplied by kinematic functions
called partial amplitudes [103–107]. These partial amplitudes do not contain any colour information and
are gauge-invariant objects. In the pure gluonic case tree level amplitudes withn external gluons may be
written in the form

An(1, ..., n) = gn−2
∑

σ∈Sn/Zn

2 Tr (T aσ(1) ...T aσ(n))An (σ(1), ..., σ(n)) , (5)

where the sum is over all non-cyclic permutations of the external gluon legs and the normalisation of
the colour matrices is TrT aT b = δab/2. The quantitiesAn on the r.h.s. are the partial amplitudes
and contain the kinematic information. They are colour-ordered, e.g. only diagrams with a particular
cyclic ordering of the gluons contribute. In general, the colour factors are combinations of open strings
(T a1 ...T an)iqjq̄

and closed strings Tr
(
T b1 ...T bm

)
of colour matrices. These building blocks form a basis

in colour space. The choice of the basis for the colour structures is not unique, and several proposals for
bases can be found in the literature [108–110].

3.3 Spinor space versus momentum space

It will be useful to discuss the relationship between spinorspace and complexified momentum space. Let
us first fix our conventions. The metric tensor isgµν = diag(+1,−1,−1,−1). A null-vector satisfies

(p0)
2 − (p1)

2 − (p2)
2 − (p3)

2 = 0. (6)
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This relation holds also for complexpµ. In complexified momentum space it is possible to choose a basis
consisting only of null-vectors:

e1 = (1, 0, 0, 1), e2 = (0, 1, i, 0), e3 = (0, 1,−i, 0), e4 = (1, 0, 0,−1), (7)

is an example of such a basis. Light-cone coordinates are defined as follows:

p+ = p0 + p3, p− = p0 − p3, p⊥ = p1 + ip2, p⊥∗ = p1 − ip2. (8)

Note thatp⊥∗ does not involve a complex conjugation ofp1 or p2. A convenient representation for the
Dirac matrices is the Weyl representation:

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 = iγ0γ1γ2γ3 =

(
1 0
0 −1

)
, σµ

AḂ
= (1,−~σ) , σ̄µȦB = (1, ~σ) , (9)

with ~σ = (σx, σy, σz) being the Pauli matrices. A Weyl spinorpA is an element of a complex two-
dimensional vector spaceS, and similar a spinorpḂ is an element of (another) complex two-dimensional
vector spaceS′. We will think of pA andpḂ as independent quantities. The dual space toS will be
denoted byS̄, its elements bypA. Similarly, we denote the dual space toS′ by S̄′ and its elements by
pḂ . The two-dimensional antisymmetric tensor provides an isomorphism betweenS andS̄ as well as
betweenS′ andS̄′:

pA = εABpB , pB = pAεAB, pȦ = εȦḂpḂ , pḂ = pȦεȦḂ . (10)

We take the two-dimensional antisymmetric tensor as

εAB = εAB = εȦḂ = εȦḂ =

(
0 1
−1 0

)
. (11)

Spinors are solutions of the Dirac equation, therefore we have for massless Weyl spinors

pµσ̄
µ |p+〉 = 0, pµσ

µ |p−〉 = 0, 〈p+| pµσ̄
µ = 0, 〈p−| pµσ

µ = 0. (12)

As normalisation we take for massless spinors

〈p− |σµ|p−〉 = 2pµ, 〈p+ |σ̄µ|p+〉 = 2pµ. (13)

The solutions to eqs. (12), (13) and (10) are

|p+〉 =
ei(α− 1

2
φ)

√
|p+|

(
−p⊥∗

p+

)
, |p−〉 =

e−i(α+ 1
2
φ)

√
|p+|

(
p+

p⊥

)
,

〈p+| =
e−i(α+ 1

2
φ)

√
|p+|

(−p⊥, p+) , 〈p−| =
ei(α− 1

2
φ)

√
|p+|

(p+, p⊥∗) . (14)

Hereα is an arbitrary phase andφ is the phase ofp+ = |p+| eiφ. The spinors corresponding to a
four-vectorpµ are only determined up to a phase. With these spinors we have

〈pq〉 [qp] = 2p · q. (15)

It is worth to note that the relation̄u(p) = u(p)†γ0, or equivalently

|p+〉† = 〈p+| , |p−〉† = 〈p−| , (16)

19



holds only for realpµ and positivep+ (e.g.φ = 0), since

|p+〉† =
e−i(α− 1

2
φ)

√
|p+|

((−p⊥∗)∗ , p+
∗) , |p−〉† =

ei(α+ 1
2
φ)

√
|p+|

(p+
∗ , p⊥

∗) . (17)

Here the upper asterisk denotes the usual complex conjugation. A pair of spinors(pȦ, pB) determines a
(unique) null-vector through

pµ =
1

2
pȦσ̄

ȦB
µ pB =

1

2
〈p+ |σ̄µ|p+〉. (18)

This is just eq. (13) written reversely. For arbitrarypȦ andpB the four-vectorpµ will be in general
complex. While eq. (14) defines a map from complexified momentum space to the spinor spaceS and
S′, which is unique up to a phase, eq. (18) goes in the reverse direction: It defines a map from the space
S′ × S to complexified momentum space. In this context it is worth toobserve that if we changepȦ or
pB (but not both) by a linear transformation as

pȦ → pȦ + zqȦ or pB → pB − zqB, (19)

the resulting four-vectorpµ(z) will be a linear function ofz. Note however that a linear change inpµ as
in pµ → pµ + zqµ with a subsequent application of eq. (14) will not result in alinear change inpȦ nor
pB .

3.4 On-shell recursion relations

In the previous section we have seen that we can associate to any null-vectorpµ a pair of spinors(pȦ, pB).
From this pair we can reconstruct the original four-vector through eq. (18). To state the on-shell recursion
relations it is best not to view the partial amplitudeAn as a function of the four-momenta, but to replace
each four-vector by a pair of two-component Weyl spinors. Therefore the partial amplitudeAn, being
originally a function of the momentakj and helicitiesλj , can equally be viewed as a function of the
Weyl spinorskj

A, kj

Ḃ
and the helicitiesλj :

An(k1, λ1, ..., kn, λn) = An(k1
A, k

1
Ḃ
, λ1, ..., k

n
A, k

n
Ḃ
, λn). (20)

Let us now consider then-gluon amplitude. For the recursion relation we single out two particlesi and
j. If (λi, λj) 6= (−,+) we have the following recurrence relation:

An

(
k1

A, k
1
Ḃ
, λ1, ..., k

n
A, k

n
Ḃ
, λn

)
= (21)

∑

partitions

∑

λ=±

AL

(
..., k̂i

A, k
i
Ḃ
, λi, ..., iK̂A, iK̂Ḃ,−λ

) i

K2
AR

(
K̂A, K̂Ḃ, λ, ..., k

j
A, k̂

j

Ḃ
, λj, ...

)
.

where the sum is over all partitions such that particlei is on the left and particlej is on the right. The
momentumK is given as the sum over all unshifted momenta of the originalexternal particles, which
are part ofAL. In eq. (21) the shifted spinorŝki

A, k̂j

Ḃ
, K̂A andK̂Ḃ are given by

k̂i
A = ki

A − zkj
A, k̂j

Ḃ
= kj

Ḃ
+ zki

Ḃ
, K̂A =

KAḂk
Ḃ
i√

〈i+ |K| j+〉
, K̂Ḃ =

kA
j KAḂ√

〈i+ |K| j+〉
, (22)

and

z =
K2

〈i+ |K| j+〉 . (23)
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Here we shiftedki
A andkj

Ḃ
, while ki

Ȧ
andkj

B were left untouched. We could equally well have used

the other choice: Shiftingki
Ȧ

andkj
B, while leavingki

A andkj

Ḃ
unmodified. In this case one obtains

a recursion relation valid for the helicity combinations(λi, λj) 6= (+,−). Therefore for all helicity
combinations of(λi, λj) there is at least one valid recursion relation. Applying this recursion relation to
the six-gluon amplitudeA6(1

−, 2−, 3−, 4+, 5+, 6+) with three positive and three negative helicities, we
choose(i, j) = (6, 1). In this case only two diagrams need to be calculated and we obtain the compact
result

A6(1
−, 2−, 3−, 4+, 5+, 6+) =

4i

[ 〈6 + |1 + 2|3+〉3
[61][12]〈34〉〈45〉s126〈2 + |1 + 6|5+〉 +

〈4 + |5 + 6|1+〉3
[23][34]〈56〉〈61〉s156〈2 + |1 + 6|5+〉

]
. (24)

3.5 Quarks, massive or massless

QCD does not consist solely of gluons, but contains the quarks as well. Let us now discuss the general
case of the inclusion of massive quarks. All formulae will have a smooth limitm → 0, therefore the
case of massless quarks will need no further discussion. Formassive fermions we have to consider Dirac
spinors. We can take them as

u(±) =
1

〈p♭ ∓ |q±〉 (p/+m) |q±〉, ū(±) =
1

〈q ∓ |p♭±〉〈q ∓ | (p/+m) ,

v(±) =
1

〈p♭ ∓ |q±〉 (p/−m) |q±〉, v̄(±) =
1

〈q ∓ |p♭±〉〈q ∓ | (p/−m) . (25)

Here,p is the momentum of the fermion and|q+〉 and〈q + | are two independent Weyl spinors used as
reference spinors. These two spinors define a light-like four-vectorqµ = 1

2〈q + |γµ|q+〉, which in turn
is used to associate to any not necessarily light-like four-vectorp a light-like four-vectorp♭:

p♭ = p− p2

2p · q q. (26)

The reference spinors are related to the quantisation axis of the spin for the fermion, and the individual
amplitudes with label+ or − will therefore refer to this spin axis. From the Dirac spinors we can
reconstruct the four-vectorpµ as follows:

pµ =
1

4

∑

λ

ū(λ)γµu(−λ). (27)

For the recursion relation, we again single out two particles i andj, which need not be massless, with
four-momentapi andpj . To these two four-momenta we associate two light-like four-momentali andlj
as follows [111,112]:

li =
1

1 − αiαj
(pi − αjpj) , lj =

1

1 − αiαj
(−αipi + pj) , αk =

2pipj − sign(2pipj)
√

∆

2p2
k

. (28)

with ∆ = (2pipj)
2 − 4p2

i p
2
j . These light-like four-vectors define massless spinors|li+〉, 〈li + |, |lj+〉

and〈lj + |. If particle i is a massive quark or anti-quark, we use|lj+〉 and〈lj + | as reference spinors
for particlei. If particlej is a massive quark or anti-quark, we use|li+〉 and〈li + | as reference spinors
for particlej. We have the recursion relation

An (u1(−), ū1(+), λ1, ..., un(−), ūn(+), λn) = (29)∑

partitions

∑

λ=±

AL

(
..., u′i(−), ūi(+), λi, ..., iv

′
K(−), iv̄′K(+),−λ

)

× i

K2 −m2
k

AR

(
u′K(−), ū′K(+), λ, ..., uj(−), ū′j(+), λj, ...

)
.
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Here we denote byk the intermediate particle where we factorise the amplitude, and byK the off-shell
four-momentum flowing through this propagator in the unshifted amplitude. We shift the Dirac spinors
as follows:

ui
′(−) = ui(−) − z|lj+〉, ū′j(+) = ūj(+) + z〈li + |, z =

K2 −m2
k

〈li + |K|lj+〉 . (30)

For the intermediate particlek we define the polarisations with respect to the reference spinors|lj+〉 and
〈li + |:

uK
′(−) =

1

〈K♭ + |li−〉
(
K/′ +mk

)
|li−〉 , ū′K(+) =

1

〈lj − |K♭+〉 〈lj−|
(
K/′ +mk

)
, (31)

where

K ′µ = Kµ − z

2
〈li + |γµ|lj+〉, K♭µ = Kµ − 1

2

K2

〈li + |K|lj+〉〈li + |γµ|lj+〉. (32)

The recursion relation is valid for(λi, λj) 6= (−,+) with the following exceptions:

• Particlesi andj cannot belong to the same fermion line.

• The combinations(q+i , g
+
j ), (q̄+i , g

+
j ), (g−i , q

−
j ) and(g−i , q̄

−
j ) are excluded.

• If i is massive, the combinations(q+i , q
′
j
+), (q+i , q̄

′
j
+), (q̄+i , q

′
j
+) and(q̄+i , q̄

′
j
+) are excluded.

• If j is massive, the combinations(q−i , q
′
j
−), (q−i , q̄

′
j
−), (q̄−i , q

′
j
−) and(q̄−i , q̄

′
j
−) are excluded.

Instead of shiftingui(−) andūj(+), we can alternatively shift̄ui(+) anduj(−):

ū′i(+) = ūi(+) − z〈lj + |, uj
′(−) = uj(−) + z|li+〉, z =

K2 −m2
k

〈lj + |K|li+〉 . (33)

For the intermediate particlek we define the polarisations now with respect to the referencespinors|li+〉
and〈lj + |:

uK
′(−) =

1

〈K♭ + |lj−〉
(
K/′ +mk

)
|lj−〉 , ū′K(+) =

1

〈li − |K♭+〉 〈li−|
(
K/′ +mk

)
, (34)

where

K ′µ = Kµ − z

2
〈lj + |γµ|li+〉, K♭µ = Kµ − 1

2

K2

〈lj + |K|li+〉〈lj + |γµ|li+〉. (35)

Doing so, we obtain a recursion relation valid for(λi, λj) 6= (+,−) with the following exceptions:

• Particlesi andj cannot belong to the same fermion line.

• The combinations(g+
i , q

+
j ), (g+

i , q̄
+
j ), (q−i , g

−
j ) and(q̄−i , g

−
j ) are excluded.

• If j is massive, the combinations(q+i , q
′
j
+), (q+i , q̄

′
j
+), (q̄+i , q

′
j
+) and(q̄+i , q̄

′
j
+) are excluded.

• If i is massive, the combinations(q−i , q
′
j
−), (q−i , q̄

′
j
−), (q̄−i , q

′
j
−) and(q̄−i , q̄

′
j
−) are excluded.

As we are free to choose the particlesi andj, we can compute all Born helicity amplitudes in QCD
with two-particle shifts via recursion relations, except the ones which involve only massive quarks or
anti-quarks. Amplitudes consisting solely of massive quarks and anti-quarks and with more than six
particles may be calculated recursively if one allows more general shifts, where more than two particles
are shifted.
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3.6 Proof of the on-shell recursion relations

For the proof [41, 45, 49–51, 62] of the on-shell recursion relation we discuss as an example the case of
the holomorphic shift as in eq. (22) or eq. (30). One considers the function

A(z) = An

(
..., ui

′(−), ūi(+), λi, ..., uj(−), ū′j(+), λj , ...
)

(36)

of one variablez, where thez-dependence enters through

ui
′(−) = ui(−) − z|lj+〉, ū′j(+) = ūj(+) + z〈li + |. (37)

The functionA(z) is a rational function ofz, which has only simple poles inz. This follows from the
Feynman rules and the factorisation properties of amplitudes. Therefore, ifA(z) vanishes forz → ∞,
A(z) is given by Cauchy’s theorem as the sum over its residues. This is just the right hand side of
the recursion relation. The essential ingredient for the proof is the vanishing ofA(z) at z → ∞. If
(λi, λj) = (+,−) it can be shown that each individual Feynman diagram vanishes for z → ∞. For the
helicity combinations(+,+) and(−,−) one first constructs a supplementary recursion relation based on
three-particle shifts and deduces from this representation the largez-behaviour ofA(z). This establishes
the recursion relation for these helicity combinations with the exceptions indicated above. The proof for
the anti-holomorphic shift as in eq. (33) proceeds analogously.

4. ON-SHELL RECURSION TO DETERMINE RATIONAL TERMS 7

On-shell methods offer an auspicious approach for dealing with the rapid growth in complexity of loop
amplitudes as the number of particles in the process increases. These methods rely on the unitarity of
the theory [113,114] which requires that the poles and branch cuts of amplitudes correspond to physical
propagation of particles. On-shell methods are presently undergoing intense development for use at loop
level (see, for example, refs. [76,77,79,85,87–94,115–117]). Their advantage lies in the relatively mild
growth in complexity as the number of external particles increases,effectively reducing loop calculations
to tree-like calculations.

On-shell methods fall into two basic categories: the unitarity method [64, 118] which constructs
amplitudes based on their branch cuts, and on-shell recursion [40,41] which constructs amplitudes from
their poles. In this section we discuss using on-shell recursion as a means for computing rational terms
of one-loop amplitudes. The loop-level construction is based directly on the construction of tree-level
recursion relations by Britto, Cachazo, Feng and Witten (BCFW), though a number of new features are
present. Further discussion of the unitarity method approach, as well as other new methods exploiting
on-shell conditions on intermediate states [70,79,85,88,92,94,119] may be found in other sections of this
report. Introductions to on-shell methods may be found in various reviews [120–122]. Earlier reviews
of spinor methods, which are profitably used in conjunction with on-shell methods, may be found in
refs. [123,124].

In the context of the unitarity method, it is convenient to divide the amplitudes into pieces that
contain branch cuts, plus rational (non-cut-containing) pieces. When using dimensional regularization,
the branch-cut containing pieces may be computed by ignoring the distinction betweenD = 4 − 2ǫ
dimensions and four-dimensions in the numerators of the loop-momentum integrands [64, 118]. This
observation allows powerful four-dimensional spinor techniques to be used to greatly simplify the on-
shell tree amplitudes appearing in the unitarity cuts. However, if one wants to obtain also the rational
terms directly from the cuts [120, 125], then the(−2ǫ) dimensional contributions are crucial: dropping
these pieces leaves undetermined additive rational terms.(The branch cuts can determine rational terms
atO(ǫ0) because they develop branch cuts atO(ǫ).) By using amplitudes valid inD = 4−2ǫ dimensions
in the unitarity cuts, all rational terms are kept8 but at the cost of more complicated expressions. It has

7Contributed by: Z. Bern, L.J. Dixon
8In the language of dispersion relations [126,127], this reconstruction is possible because the dispersion integrals converge

with dimensional regularization [128].
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C

Fig. 6: Using Cauchy’s theorem, rational terms in loop amplitudes can be reconstructed from residues at poles in the complex

plane. The poles are of two types: physical and spurious. Allpole locations are knowna priori. Residues at physical poles

follow from factorization onto lower-point amplitudes. Residues at spurious poles cancel against corresponding contributions

from the cut parts, and so they can be inferred from four-dimensional cuts.

been pointed out [80–83] that the rational terms are relatively easy to obtain from Feynman diagrams
because they do not require the full set of tensor integrals.In addition, Brandhuberet. al. have argued
that the rational terms can be obtained from a set of counterterms [115]. Britto and Feng have recently
given a complete set of formulæ for constructing loop amplitudes, including their rational terms [94],
following earlier work [70,79,87–90,119].

An early version of on-shell methods was used to compute the one-loop matrix elements needed
for the NLO QCD corrections toe+e− → γ∗, Z → 4 jets andpp→W,Z + 2 jets [129]. They have also
been used to obtain analytic expressions for the complete one-loop six-gluon amplitude [64, 66, 68, 70,
76,77,79–82,118] as well as a variety of helicity configurations forn-gluon amplitudes [72,75–77,91].
The results confirm the mild growth in complexity of these methods as the number of external particles
grows.

A crucial next step for applying these methods to LHC physicsis the construction of automated
programs to compute the large number of phenomenologicallyinteresting high-multiplicity processes.
As discussed in other sections of this report, such automated programs are in the midst of being con-
structed [93,116], using the integration machinery of Ossola, Papadopoulos, and Pittau [85]. The recent
numerical implementation by Ellis, Giele and Kunszt [116] of the unitarity method presently makes use
ofD = 4 simplifications and hence does not contain rational terms. The program of Ossola, Papadopou-
los, and Pittau [93] can be used to obtain the rational terms,but currently requires one-loop Feynman
diagrams to capture these terms, instead of more efficient on-shell tree amplitudes.

On-shell recursion offers an efficient alternative for constructing one-loop rational terms directly
from their known factorization properties, in much the sameway as the BCFW recursion relations can
be used to obtain tree-level amplitudes. However, a number of new issues arise at loop level that must
be dealt with first to have a practical method. These issues include the appearance of branch cuts, spuri-
ous singularities, the behavior of loop amplitudes under large complex deformations and in some cases,
‘unreal poles’, which are present with complex but not real momenta. More practical issues are automa-
tion and numerical stability. Here we briefly summarize the construction of rational terms via on-shell
recursion [71–73,76,77,91], describing in particular a simple modification making it straightforward to
automate.

In general, any one-loop amplitude can be divided into two pieces,

A(1)
n = cΓ

[
Cn +Rn

]
, (38)

whereCn are the ‘cut-containing terms’ possessing logarithms, polylogarithms, and associatedπ’s. The
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Fig. 7: Diagrammatic contributions to on-shell recursion at one-loop for a[j, l〉 shift. The labels ‘T’ and ‘L’ refer to tree and

one-loop vertices corresponding to the rational parts of lower-point on-shell amplitudes.

rational terms, denoted byRn, are defined by setting these (poly)logarithmic terms to zero,

Rn ≡ 1

cΓ
An

∣∣∣
rat

≡ 1

cΓ
An

∣∣∣∣
ln,Li2,π→0

. (39)

Let us assume that the cut-containing termsCn of the particular amplitude under consideration have
already been computed using four-dimensional unitarity. This leaves the problem of computing the
rational termsRn.

On-shell recursion relations can be derived by consideringcomplex on-shell deformations of am-
plitudesA(z), which are characterized by a single complex parameterz [41]. The z-dependence al-
lows us to use standard complex variable theory to constructamplitudes via Cauchy’s Theorem. To set
up an on-shell recursion relation forRn consider the effect of shifting some set of external momenta
ki → ki(z), such that the on-shell conditions[ki(z)]

2 = m2
i and the original momentum conservation

are satisfied. In the massless case, it is particularly convenient to shift the momenta of two external legs,
say,j andl,

kµ
j → kµ

j (z) = kµ
j − z

2
〈j−|γµ|l−〉,

kµ
l → kµ

l (z) = kµ
l +

z

2
〈j−|γµ|l−〉 , (40)

wherez is a complex parameter and|i+〉 and |i−〉 are Weyl spinors of positive and negative chirality,
following the notation of ref. [123]. In terms of these spinors, the shift is

|j−〉 → |j−〉 − z |l−〉 , |l+〉 → |l+〉 + z |j+〉 . (41)

We denote the shift in eqs. (40) and (41) as a[j, l〉 shift.

The on-shell recursion relations follow from evaluating the contour integral,

1

2πi

∮

C
dz

Rn(z)

z
, (42)

where the contour is taken around the circle at infinity, as depicted in fig. 6, andRn(z) isRn evaluated
at the shifted momenta (40). If the rational terms under consideration vanish asz → ∞, the contour
integral vanishes and we obtain a relationship between the desired rational contributions atz = 0, and a
sum over residues of the poles ofRn(z), located atzα,

Rn(0) = −
∑

poles α

Resz=zα

Rn(z)

z
. (43)

If Rn(z) does not vanish asz → ∞, then there are additional contributions. A systematic strategy for
computing such largez contributions using auxiliary recursion relations was presented in ref. [76], to
which we refer the reader.
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Fig. 8: Diagrammatic representation of one-loop overlap terms for a[j, l〉 shift. The channels correspond to physical poles and

remove double counts induced by cut completion.

As illustrated in fig. 6, the poles in one-loop rational termsfall into two categories: the physical
poles, which are present in the full amplitudes; and the spurious poles, which cancel against poles in the
cut-containing terms.

Residues at physical poles are dictated by factorization onto lower-point amplitudes. They may be
computed using the recursive diagrams9 in fig. 7,

RD
n ≡ −

∑

phys. poles {r,s}

Resz=zrs

Rn(z)

z

=
∑

r,s,h

{
Atree

L (z = zrs)
i

K2
r···s

RR(z = zrs) +RL(z = zrs)
i

K2
r···s

Atree
R (z = zrs)

+Atree
L (z = zrs)

iRF

K2
r···s

Atree
R (z = zrs)

}
. (44)

The ‘vertices’RL andRR in this recursion relation are the pure rational parts — using the definition (39)
— of the lower-point, on-shell one-loop amplitudes. The ‘vertices’ Atree

L andAtree
R are on-shell tree

amplitudes. The subscriptsL andR on the vertices indicate their location to the left or right of the
central propagator in fig. 7. In the vertices the shift variable z is frozen to the values

zrs =
K2

r···s

〈j−| /Kr···s |l−〉
, (45)

corresponding to the location of the poles inz, coming from shifted propagators. The rational partRF

of the factorization functionF [130] only contributes in multi-particle channels, and only if the tree
amplitude contains a pole in that channel. Generically we have a double sum, labeled byr, s, over
recursive diagrams, with legsj andl always appearing on opposite sides of the pole. There is alsoa sum
over the helicityh of the intermediate state. The superscriptD onRD

n indicates that this set of recursive
diagrammatic contributions is not the whole rational part,as discussed below.

It is interesting to note the similarity of the one-loop recursion relation (44), to the corresponding
tree-level recursion relation [41],

Atree
n =

∑

r,s,h

Atree
L (z = zrs)

i

K2
r···s

Atree
R (z = zrs) . (46)

Thus loop-level recursive diagrams echo the simplicity of tree-level recursion.

One way to deal with the spurious poles is to start by finding a ‘cut completion’Ĉn [73, 76, 77,
91, 122]. One adds certain rational termŝCRn to Cn, such that the spurious poles in̂Cn(z) cancel
entirely. Because physical amplitudes cannot have spurious singularities, the remaining rational terms,

9‘Unreal’ poles, which do not correspond to factorizations with real momenta, may be avoided by choosing appropriate
shifts [76].
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R̂n(z), must also be free of these spurious singularities. This cutcompletion makes it unnecessary to
compute residues at spurious poles. It is rather helpful when deriving compact analytic expressions for
the amplitudes. It does introduce additional ‘overlap diagrams’, as depicted in fig. 8. These diagrams
correct for the contributions of̂CRn in physical factorization limits. They are simple to compute from
the residue of̂CRn at each physical polezrs.

Following the cut-completion procedure, a variety of rational terms with an arbitrary number of
external legs have been constructed [75–77, 91], giving complete amplitudes when combined with the
previously-computed cut-containing parts [64, 68, 69, 74,91, 118]. More generally, it should be possible
to form a set of cut completions using integral functions of the type given in ref. [131] to absorb the
spurious singularities.

For the purposes of automation in a numerical program, another approach is preferable [132]. It
is simpler to obtain the residues at the spurious poles directly from the cut parts, calculated from the
four-dimensional unitarity method. Because a complete amplitude is free of spurious poles, any spurious
pole found in the rational parts must cancel a spurious pole in the cut parts. To get the full rational part,

Rn = RD
n +RS

n , (47)

we add to the recursive diagramsRD
n some ‘spurious’ contributionsRS

n , evaluated by means of the cut
termsCn(z),

RS
n = −

∑

spur. poles β

Resz=zβ

Rn(z)

z
=

∑

spur. poles β

Resz=zβ

Cn(z)

z
. (48)

The spurious polesβ can be classified systematically in terms of the vanishing loci, ∆(z) = 0, of shifted
Gram determinants∆ associated with box, triangle and bubble functions. (In themassless case, the
bubble Gram determinant does not generate a spurious pole.)

To illustrate this modified procedure, consider the five-gluon amplitudeA(1),s
5 (1−, 2−, 3+, 4+, 5+),

with a scalar in the loop. The construction of the rational terms in this amplitude, using on-shell recursion
with cut completion, has already been discussed in some detail elsewhere [73, 122]. Here we describe
the new approach for obtaining these terms.

The cut part of the amplitude [133] is

C5 = − i

6

〈1 2〉3
〈2 3〉〈3 4〉〈4 5〉〈5 1〉

[
ln

(−s23

µ2

)
+ ln

(−s51

µ2

)]

− i

3

[3 4]〈4 1〉〈2 4〉[4 5](〈2 3〉[3 4]〈4 1〉+ 〈2 4〉[4 5]〈5 1〉)
〈3 4〉〈4 5〉

ln

(
−s23
−s51

)

(s51 − s23)3
+ · · · (49)

whereµ2 is a scale and ‘· · · ’ signifies that we are dropping terms not pertinent for our discussion. The
spinor inner products and kinematic invariants are defined as,

〈a b〉 ≡ 〈a− | b+〉 , [a b] ≡ 〈a+ | b−〉 , sab ≡ (ka + kb)
2 . (50)

The rational terms are determined by evaluating the recursive diagrams, plus the rational residues
of the cut terms at the spurious poles. Here we use the[1, 2〉 shift. (As discussed in ref. [73, 76], for
this shift there are no additional contributions from either largez behavior or unreal poles.) With the
[1, 2〉 shift, the non-vanishing recursive diagrams are depicted in fig. 9. A simple computation of these
diagrams (see section 5.1 of ref. [122]) gives,

D
(a)
5 = i

(
1

3ǫ
+

8

9

) 〈1 2〉3
〈2 3〉〈3 4〉〈4 5〉〈5 1〉 , D

(b)
5 = − i

3

[2 4][3 5]3

〈3 4〉[1 2][1 5][2 3]2
, (51)
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Fig. 9: Non-vanishing recursive diagrams for the rational terms ofA(1),s
5 (1−, 2−, 3+, 4+, 5+), using a[1, 2〉 shift.

as the recursive contributions.

We still need to account for the residues at the spurious poles. In the present example with a[1, 2〉
shift, the only such pole comes from solvings51(z) − s23(z) = 0 (corresponding to a shifted two-mass
triangle Gram determinant). The solution is,

zs ≡
s51 − s23

〈1 5〉[5 2] + 〈1 3〉[3 2]
=
s51 − s23

〈1 4〉[2 4]
. (52)

To obtain the residue, we start from the logarithmic terms ofeq. (49), and perform the[1, 2〉 shift eq. (41),
yielding,

C5(z)

z
= − i

3

[3 4]〈4 1〉(〈2 4〉 + z〈1 4〉)[4 5]((〈2 3〉+ z〈1 3〉)[3 4]〈4 1〉 + (〈2 4〉 + z〈1 4〉)[4 5]〈5 1〉)
〈3 4〉〈4 5〉

×
ln

(
(〈2 3〉+z〈1 3〉)[3 2]
〈5 1〉([1 5]−z[2 5])

)

z (s51 − s23 − z〈1 4〉[2 4]))3
+ · · · , (53)

where we have kept only the term contributing to the spuriousresidue atzs.

The residue needed for eq. (48) can be extracted straightforwardly, by series expanding both the
logarithm and its coefficient in eq. (53) aroundz = zs. Cleaning up the result of this residue evaluation,
we find,

S
(a)
5 = Resz=zs

C5(z)

z

= − i

6

〈1 2〉2〈1 4〉[3 4]

〈1 5〉〈2 3〉〈3 4〉〈4 5〉[2 3]
+
i

6

〈1 4〉[3 4][3 5]
(
〈1 4〉[3 4] − 〈1 5〉[3 5]

)

〈1 5〉〈3 4〉〈4 5〉[1 5][2 3]2

− i

6

s51 + s23

s23s51(s51 − s23)2

[3 4]〈4 1〉〈2 4〉[4 5]
(
〈2 3〉[3 4]〈4 1〉 + 〈2 4〉[4 5]〈5 1〉

)

〈3 4〉〈4 5〉 . (54)

The total rational part,

R5 = RD
5 +RS

5 = D
(a)
5 +D

(b)
5 + S

(a)
5 , (55)

matches the result obtained in refs. [73,122] using a cut completion. The complete amplitude is obtained
by summing the cut (49) and rational (55) contributions.

The modified construction described here is amenable to automation. In a numerical program,
instead of obtaining the residues at spurious poles by series expansion, we may compute them by nu-
merically evaluating the cut terms at several points aroundeach pole. The automation and numerical im-
plementation of on-shell recursion to amplitudes of interest for LHC phenomenology will be described
elsewhere [132].
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and Daniel Mâitre for collaboration on the topics discussed here.

28



5. FOUR- AND D-DIMENSIONAL UNITARITY CUTS 10

5.1 Four-dimensional unitarity cuts

The application of unitarity as an on-shell method of calculation, as introduced in [64], is based on the
principles that products of on-shell tree-level amplitudes produce functions with the correct branch cuts
in all channels [134–137], and that any one-loop amplitude can be expressed as a linear combination of of
scalar (i.e. trivial numerator) master integrals [138–143]. Given the independent knowledge of the master
integrals, to compute any amplitude it is sufficient to evaluate the coefficients of such a decomposition.

For one-loop amplitudes, systematic techniques have been developed to extract the coefficients
algebraically, preserving gauge invariance at every intermediate stage of the computation. The use of
four-dimensionalstates and momenta in the cuts enables the construction of the polylogarithmic terms
in the amplitudes, which are fixed by their branch cuts, but generically drops rational terms, which have
to be recovered independently.

Some recent developments of unitarity-based methods applygeneralized unitarity cuts to ampli-
tudes and master integrals. The coefficients are then extracted by matching the generalized cuts. General-
ized unitarity corresponds to requiring more than two internal particles to be on-shell, and the fulfillment
of these constraints can only be realized through complex kinematics. Complex kinematics are the key
for the exploration of singularities of amplitudes and the use of factorization information to reconstruct
amplitudes recursively, since the singularities of a scattering amplitude are determined by lower-point
amplitudes in the case of poles and by lower-loop ones in the case of cuts [39,120,123,124].

A notable application of complex momenta within generalized unitarity is the quadruple cut, which
allows for an immediate and purely algebraic determinationof the coefficients of box functions [119].
Every box coefficient is simply determined by the product of the four tree-level amplitudes sitting at
each corner, evaluated at the two particular values of the loop momentum which fulfill the four equa-
tions imposed by the vanishing of the cut denominators. Double and triple unitarity cuts have led to
direct techniques for extracting triangle and bubble integral coefficients analytically [70,79,89]. In cases
where fewer than four denominators are cut, the loop momentum is not frozen, so some explicit integra-
tion over the phase space is still required. In [70, 79, 89], double or triple cut phase-space integration
has been reduced to extraction of residues in spinor variables, and, in the case of a triple cut, residues
in a Feynman parameter. This approach has been used to compute analytically the final contributions
to the cut-constructible part of the the six-gluon amplitude [70,79], and the complete six-photon ampli-
tudes [83,84].

In general, one can computen-point (n ≥ 4) coefficients from quadruple cuts, three-point coeffi-
cients from triple-cuts, and two-point coefficients from double-cuts, by avoiding the conventional tensor
reduction. As it turns out, given the decomposition of any amplitude in terms of master integrals, the
coefficient of anyn-point master integral can be recovered from then-particle cut. Obviously, anyn-
particle cut may also detect higher-point master integrals, which appear with different analytic structures
for they come from the Landau poles specific to each of the master integrals. This is indeed the case
for the usual (double) unitarity cut, which can be used exclusively to derive box, triangle, and bubble
coefficients. In cases with massive particles, it is useful to apply a generalized cut to find the coefficient
of the 1-point (tadpole) master integral.

The algorithm of [70, 79] for evaluating any finite unitaritycut involves a change of coordinates
that brings the loop momentum variable into the spinor formalism. The idea is that the final integrals
always localize to some poles in the region of integration. Phase space integration is thus reduced to
a sequence of algebraic manipulations, up to an integrationover a single Feynman parameter, which is
responsible for logarithms. Ultimately, even this integration does not need to be carried out, since it
is possible to match integrands at an early stage of the calculation. The procedure naturally leads to
a clean separation of the master integrals, allowing for an individual calculation of the corresponding

10Contributed by: R. Britto, P. Mastrolia

29



coefficients.

By now, explicit analytic formulas for the results of unitarity-based methods are available [90,92,
94, 95, 119]. Coefficients of the master integrals are listeddirectly in terms of tree-level input data. All
integration and reduction can now be avoided. Although it may not be a significant distinction in terms of
the final results, we note that the derivations of [92,95,119] used generalized cuts, while those of [90,94]
used ordinary double cuts.

5.2 D-dimensional unitarity

Full one-loop amplitudes can be reconstructed from unitarity cuts inD = 4− 2ǫ dimensions [125,128].
In theD-dimensional unitarity method, there is no need to distinguish “rational” and “cut-constructible”
parts of the amplitude. Contributions that might be called “rational” (after expanding aroundǫ = 0)
appear here asǫ-dependent terms in the coefficients of the master integrals(before expanding around
ǫ = 0).

A systematicD-dimensional unitarity double-cut method was proposed in [87,88], reducing one-
loop amplitudes to master integrals for arbitrary values ofthe dimension parameter. Coefficients of the
master integrals can be extracted without fully carrying out theD-dimensional phase space integrals.
Only a four dimensional (massive) integration is explicitly required. That can be performed by four-
dimensional unitarity techniques or any other available alternative. The remaining integral, which gives
rise to theǫ-dependence of the cut-amplitude, is mapped to phase-spaceintegrals in4 + 2n− 2ǫ dimen-
sions, wheren is a positive integer. With recursive dimensional shift identities, similar to the ones in
loop integration, the cut-amplitude is reduced in terms of bubble, triangle, box and pentagon cut master
integrals in4 − 2ǫ dimensions. The reduction is valid for an arbitrary number of dimensions. Expand-
ing in ǫ gives both the (poly)logarithmic and rational part of the amplitude atO(ǫ0) and higher; these
contributions are required in cross-sections beyond the next-to-leading order in the relevant coupling
strength.

Generalized unitarity cuts are possible and useful inD dimensions as well [89,144]. The benefits
of the double-cut integration of [70, 79, 87, 88] have been extended to the evaluation of triple cuts [89],
for the direct extraction of triangle and higher-point-function coefficients from any one-loop amplitude
in arbitrary dimensions. Accordingly, the triple cut is treated as a difference of two double cuts with the
same particle content, and the same propagator carrying respectively causal and anti-causal prescription
in each of the two cuts. The triple cut phase space for a massless particle inD dimensions is written
as a convolution of a four-dimensional triple cut of a massive particle, and an integration over the cor-
responding mass parameter, which plays the role of a(−2ǫ)-dimensional scale. Just as in the case of
the double-cut [87,88], to perform the four-dimensional integration, one combines the method of spinor
integration of massive phase-space integrals, and an integration over the Feynman parameter. But, in the
case of the triple-cut, after Feynman parametrization, by combining back the two double-cuts, the para-
metric integration is reduced to the extraction of residuesto the branch points in correspondence of the
zeroes of a standard quadratic function in the Feynman parameter. It is that standard quadratic function
(or rather, its roots) that carry the analytic information characterizing each master integral, therefore de-
termining its own generalized cuts. The final integration over the dimensional scale parameter is mapped
directly to the triple cut of master integrals, possibly with shifted dimensions.

5.3 Mathematica package for spinor formalism

Recently, the package S@M (Spinors@Mathematica) was released [145]. It implements the spinor-
helicity formalism in Mathematica. The package allows the use of complex-spinor algebra along with the
multi-purpose features of Mathematica, and it is suitable for the algebraic manipulation and integration
of products of tree amplitudes with complex spinors sewn in generalized unitarity cuts.
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6. COMMENTS ON UNITARITY BASED ONE-LOOP ALGORITHMS 11

6.1 Introduction

At the LHC deviations from the Standard Model will likely show up in observables of complex multi-
particle final states. It is important to understand the Standard Model predictions and uncertainties for
these complicated final states. Leading-order Monte Carlo (LO-MC) programs give a first estimate.
However, to understand the uncertainties we need at least a next-to-leading order Monte Carlo (NLO-
MC).

The basic calculational framework for both tree-level amplitudes (needed for the LO-MC) and
one-loop amplitudes (needed for NLO-MC) is the perturbative expansion in Feynman diagrams. This
immediately gives us a straightforward algorithm suitablefor numerical implementation. However, such
implementations are not satisfactory from a numerical standpoint. The number of Feynman diagrams
grows faster than factorial with the number of external particles involved in the scattering process. As a
consequence the number of multiplications, and therefore the computer time needed to evaluate a phase
space point, will grow at least as fast.

In computer science, algorithms with factorial growth are called exponential or factorial algorithms
or simply E-algorithms [146]. Such algorithms are not considered optimal, i.e. the number of external
particles we can calculate becomes quickly limited by computer resources. In contrast, the other class
of algorithms with polynomial growth in the number of external legs are called P-algorithms. Such
algorithms are highly desirable as the added computationaleffort needed to go fromN to (N+1) external
particles is

(
N+1

N

)α
. This means the limiting factor for these types of algorithms in scattering amplitude

calculations is often human resources instead of computer resources. In the subsequent sections we will
argue that for numerical solutions, especially in the era ofLHC physics, the complexity of the algorithms
are an important consideration.

6.2 Tree-level algorithms of polynomial complexity

The number of Feynman graphs grows very fast with the number of external legs. For a tree-level
N -gluon scattering the number of individual Feynman graphs is approximatelyN (N−3) (within 5%
accuracy up to 16 gluons) [147]. This means that to extend theLO-MC from 2 gluon → 5 gluon to
2 gluon→ 6 gluon, the number of multiplications increases by at least afactor of 13. Several LO-MC
are available for the numerical evaluation of arbitrary tree-level processes in the Standard Model and
some of its extensions. Most of these packages are based on simple Feynman diagram evaluations. We
call these Numerically Implemented Exponential (NIE) algorithms. A prominent representative in this
class of algorithms is MadGraph [148].

By using currents instead of amplitudes in Feynman diagram calculations one can construct re-
cursion relations [149]. This method re-uses recurring groups of off-shell Feynman graphs in an optimal
manner. Because this leads to a more factorized way of calculating the scattering amplitude one can im-
mediately extend the analytic calculations to more complexprocesses such as vector boson production
with up to 6 partons [150,151] and 7 parton processes [152].

Another consequence of the recursion relations is the formulation of an algorithm of polynomial
complexity. For a tree-levelN -gluon process the number of multiplications grows asN4 [147]. This
means that to extend the LO-MC from2 gluon → 5 gluon to 2 gluon → 6 gluon the increase in
the number of multiplications is only 1.7 (compared to 13 forstandard Feynman graph calculations).
We will denote the LO-MC programs based on recursive type of evaluation Numerically Implemented
Polynomial (or NIP) algorithms. A prominent representative is the ALPGEN program [153].

As is clear from the discussion we have reached a point for LO-MC where the problem of numer-
ically calculating the scattering amplitudes can be considered solved.

11Contributed by: R.K. Ellis, W.T. Giele, Z. Kunszt
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6.3 Toward one-loop algorithms of polynomial complexity

The LO-MC prediction at LHC type of energies for QCD and/or Electro-Weak processes are rather
qualitative. One estimates the magnitude of the cross section and predicts the shape for an observables.
The NLO-MC will give us a first real estimate of the expected normalization and will give an orderαS

correction to the shape. Within the perturbative context this allows us to estimate the uncertainties on the
predictions with some confidence.

The one-loop amplitude of the basic2 gluon → 2 gluon was already calculated analytically in
1986 [154] using the standard Feynman diagram calculation.One can extend this method brute force
with modern day computers. Using a combination of e.g. QGRAF[155] and FORM [156] one can
generate and manipulate the Feynman graphs giving tensor coefficients times tensor integrals. The tensor
integrals can be determined using Pasasarino-Veltman reduction [157] or other techniques. This then
can be straightforwardly implemented in a numerical code for e.g. 2 gluon → 4 gluon [158]. The
evaluation of a single phase space point for this process is of the order 9 second (10,000 times slower as
the2 gluon→ 2 gluon one-loop amplitude generated using the same procedure). It is clear that such a
direct approach using Feynman diagrams is severely affected by the factorial growth in complexity. One
needs badly a polynomial complexity calculational approach.

It can be shown that any dimensional regulated multi-loop amplitude is fully reconstructible using
unitarity cuts [159]. Because the unitarity cuts factorizes the one-loop amplitudes into a product of
two tree-level amplitudes this proves the existence of a polynomial complexity algorithm for one-loop
calculations. This was exploited in the analytic calculation of thee+e− → 4 partons one-loop amplitude
[129] 12. The method applies four-dimensional unitarity cuts, thereby it only partly reconstructs the one-
loop amplitude through unitarity, the so-called cut-constructible part. The missing part is referred to as
the rational part and is determined by other methods. The applied 4-dimensional unitarity method has no
direct numerical equivalent, but it is explicitly demonstrated that such methods of polynomial complexity
work very well within the context of analytic multi-leg one-loop calculations.

The first numerically implementable method came from the so-called quadruple cut method [119].
While presented as an analytic method to calculate coefficients of the 4-point scalar master integrals for
multi-gluon processes, it has a direct numerical implementation. The numerical procedure can be used
to calculate the box coefficients for any multi-particle scattering process. By applying the quadruple
cut the one-loop graph breaks down into four tree-level amplitudes. This is therefore instantly a NIP
algorithm for calculating the coefficients of the 4-point master integrals. From the unitarity constraints,
i.e. the four cut propagators have to be numerically zero, one gets only two complex solutions for the
loop-momentum. By evaluating the product of the four tree-level graphs using the two complex loop
momenta solutions, one gets the coefficient by simply averaging over the two solutions.

The numerical implementation of the method is extremely fast and simple, showing the potential of
a full numerical implementable unitarity method. To achieve this one also has to calculate the coefficients
of the other 3 master integrals (the 1-, 2- and 3-point scalarintegrals). A direct generalization of the
quadruple cut method becomes complicated because of overlapping contributions. By applying a triple
cut to determine the 3-point coefficient one has to take into account that part of this contribution is also in
the quadruple cut. Disentangling these overlapping contributions proves to be not that straightforward.

For a one-loop amplitude one can construct a general parametric form of the integrand and deter-
mine its coefficients by demanding different combinations of sets of propagators to be zero (i.e. cutting
the lines) for both the parametric form of the amplitude and the expression obtained using Feynman
graphs [85]. This method is purely algebraic as it works on the integrand level. When setting four propa-
gators to zero this method is identical to the quadruple cut method. However, we now get in addition the
full loop dependence of the integrand of the 4-point master functions through its parametric form. This
allows one to simply determine the triple cut contribution of the parametric 4-point integrand and hence

12The 5 gluon one-loop was calculated using string inspired methods [133].
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we know the subtraction term.

Using this method to construct the subtraction terms it is now straightforward to formulate a nu-
merical implementable algorithm of polynomial complexityfor the cut constructible part [116]. Because
we determine the coefficients of the 2-, 3- and 4-point parametric form of integrands by the equivalent of
unitarity cuts, the actual one-loop amplitude factorizes in a product of two, three or four tree-level ampli-
tudes. That is, we can determine the full parametric form of the integrand from tree-level amplitudes. The
final loop integration over the parametric form is straightforward and gives us the three scalar master in-
tegrals and their respective coefficients. This method now extends the polynomial complexity algorithm
of the quadruple cut method to include also the triple and double cut contributions. As a demonstra-
tion we used this method to numerically evaluate multi-gluon scattering amplitudes. We found using a
single standard processor the following results: the2 gluon→ 2 gluon at 9 seconds/10,000 events, the
2 gluon→ 3 gluon at 35 seconds/10,000 events and the2 gluon→ 4 gluon at 107 seconds/10,000 events.
This can be approximated byN6/450 seconds/10,000 events, which by extrapolation would give around
260 seconds/10,000 events for2 gluon→ 5 gluon. These evaluation times are more than sufficient for
use in NLO-MC generators, even on a modest single processor system.

6.4 Conclusions: the rational part

The final step is a numerical suitable algorithm for the rational part of the one-loop amplitude. This is
the final hurdle in achieving a full solution of polynomial complexity for numerical one-loop amplitude
evaluations. Three methods exist in the literature. The first method determines the rational part of the
tensor integrals. These rational parts can then be contracted in with the tensor coefficients to give the full
one-loop rational part [80, 83]. This method goes back to theFeynman diagram expansion and leads to
an algorithm of factorial complexity. This negates all progress made with the determination of the cut
constructible part using numerical unitarity techniques.

The other two methods are more analytic in concept, but should in principle be suitable for a nu-
merical implementation. The so-called bootstrap method sets up a recursive procedure for the rational
part [76] similar to the tree-level unitarity based recursion relations [41]. This makes the method of poly-
nomial complexity. However, in its current formulation it is not suitable for numerical implementation.
The reason is that both the rational and cut constructible part of the one-loop amplitude contain so-called
spurious poles. When adding the two parts together these spurious poles cancel. This means that for
the construction of an unitarity based recursion relation in the rational part these spurious poles have to
be removed. This procedure is called cut-completion, i.e. make both cut-constructible and rational part
free of spurious poles. Then the rational part contains onlyphysical poles and a unitarity based tree-level
like recurrence relation for the rational part is constructible. Unfortunately the cut-completion procedure
requires analytic knowledge of the spurious terms, which upto now have only be determined by explicit
analytic calculation of the cut-constructible part.

One can in principle retrieve the full one-loop amplitude byapplyingD-dimensional unitarity
cuts [88, 125]. Such an implementation is per construction of polynomial complexity. It requires the
calculation of theD-dimensional tree-level amplitudes. This can be implemented by restricting oneself
to massive scalar internal particles where the mass in generated by the extra-dimensional length of the
loop-momentum. In this manner the extra-dimensional part of the loop-momentum can be integrated out.
After that one can read off the appropriate master integral coefficients and rational part. The required
scalar internal particles restrict this method at the moment to purely gluonic scattering amplitudes. In
its current implementation this method is restricted to analytic applications for purely gluonic one-loop
scattering amplitudes.

It is clear from the discussions that a numerical algorithm of polynomial complexity is the only
issue left in fully solving one-loop calculations in a similar way tree-level calculations have been solved.
Achieving this final step would open the way to a multitude of NLO-MC generators for processes such
as for examplePP → tt̄ +2 jets,PP → tt̄ + bb̄ andPP → Vector-Boson + 3, 4 jets.
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A NIP implementation for the rational part has to exist. Its construction in the near future is of
great importance to make the first step towards more complicated NLO-MC programs relevant for the
LHC phenomenology.

7. PHYSICAL APPLICATIONS OF THE OPP METHOD TO COMPUTE ONE-LO OP AM-
PLITUDES13

7.1 Introduction

In two recent papers [85, 86], we proposed a reduction technique (OPP) for arbitrary one-loop sub-
amplitudes atthe integrand level[111] by exploiting numerically the set of kinematical equations for
the integration momentum, that extend the quadruple, triple and double cuts used in the unitarity-cut
method [95, 116, 118, 119]. The method requires a minimal information about the form of the one-loop
(sub-)amplitude and therefore it is well suited for a numerical implementation. The method works for
any set of internal and/or external masses, so that one is able to study the full electroweak model, without
being limited to massless theories.

In Section 7.2 we outline the basics features of the method. In Section 7.3 we describe a numeri-
cally stable implementation of the OPP algorithm, in a form of aFORTRAN90 code,CutTools [93]. In
the last section, we compute, as an application, the one-loop QCD corrections to the processpp→ ZZZ
at the LHC, also showing distributions for physically interesting quantities.

7.2 The OPP method

The starting point of the OPP reduction method is the generalexpression for theintegrandof a generic
m-point one-loop (sub-)amplitude

A(q̄) =
N(q)

D̄0D̄1 · · · D̄m−1
, D̄i = (q̄ + pi)

2 −m2
i , p0 6= 0 . (56)

In the previous equation, we use a bar to denote objects living inn = 4+ǫ dimensions, and̄q2 = q2+ q̃2,
whereq̃2 is ǫ-dimensional and(q̃ · q) = 0. N(q) is the4-dimensional part of the numerator function
of the amplitude. If needed, theǫ-dimensional part of the numerator should be treated separately, as
explained later.N(q) depends on the4-dimensional denominatorsDi = (q + pi)

2 −m2
i as follows

N(q) =
m−1∑

i0<i1<i2<i3

[
d(i0i1i2i3) + d̃(q; i0i1i2i3)

] m−1∏

i6=i0,i1,i2,i3

Di

+
m−1∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]
m−1∏

i6=i0,i1,i2

Di

+
m−1∑

i0<i1

[
b(i0i1) + b̃(q; i0i1)

] m−1∏

i6=i0,i1

Di

+
m−1∑

i0

[a(i0) + ã(q; i0)]
m−1∏

i6=i0

Di

+ P̃ (q)
m−1∏

i

Di . (57)

Inserted back in Eq. (56), this expression simply states themulti-pole nature of anym-point one-loop
amplitude, that, clearly, contains a pole for any propagator in the loop, thus one has terms ranging from

13Contributed by: G. Ossola, C.G. Papadopoulos, R. Pittau
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1 tom poles. Notice that the term with no poles, namely that one proportional toP̃ (q) is polynomial
and vanishes upon integration in dimensional regularization; therefore does not contribute to the ampli-
tude, as it should be. The coefficients of the poles can be further split in two pieces. A piece that still
depend onq (the termsd̃, c̃, b̃, ã), that vanishes upon integration, and a piece that do not depend on q
(the termsd, c, b, a). Such a separation is always possible and the latter set of coefficients is immedi-
ately interpretable as the ensemble of the coefficients of all possible 4, 3, 2, 1-point one-loop functions
contributing to the amplitude.

Once Eq. (57) is established, the task of computing the one-loop amplitude is then reduced to
the algebraical problem of fitting the coefficientsd, c, b, a by evaluating the functionN(q) a sufficient
number of times, at different values ofq, and then inverting the system. That can be achieved quite
efficiently by singling out particular choices ofq such that, systematically, 4, 3, 2 or 1 among all possible
denominatorsDi vanishes. Then the system of equations is solved iteratively. First one determines all
possible 4-point functions, then the 3-point functions andso on. For example, callingq±0 the 2 (in general
complex) solutions for which

D0 = D1 = D2 = D3 = 0 , (58)

(there are 2 solutions because of the quadratic nature of thepropagators) and since the functional form
of d̃(q; 0123) is known, one directly finds the coefficient of the box diagramcontaining the above 4
denominators through the two simple equations

N(q±0 ) = [d(0123) + d̃(q±0 ; 0123)]
∏

i6=0,1,2,3

Di(q
±
0 ) . (59)

This algorithm also works in the case of complex denominators, namely with complex masses. Notice
that the described procedure can be performedat the amplitude level. One does not need to repeat the
work for all Feynman diagrams, provided their sum is known: we just suppose to be able to compute
N(q) numerically.

The described procedure works in 4 dimensions. However, even when starting from a perfectly
finite tensor integral, the tensor reduction may eventuallylead to integrals that need to be regularized
(we use dimensional regularization). Such tensors are finite, but tensor reduction iteratively leads to rank
m m-point tensors with1 ≤ m ≤ 5, that are ultraviolet divergent whenm ≤ 4. For this reason, we
introduced, in Eq. (56), thed-dimensional denominators̄Di, that differs by an amount̃q2 from their
4-dimensional counterparts

D̄i = Di + q̃2 . (60)

The result of this is a mismatch in the cancellation of thed-dimensional denominators of Eq. (56) with
the 4-dimensional ones of Eq. (57). The rational part of the amplitude, calledR1 [160], comes from
such a lack of cancellation. A different source of Rational Terms, calledR2, can also be generated from
the ǫ-dimensional part ofN(q) (that is missing in Eq. (56)). For the time being, it should beadded by
hand by looking at the analytical structure of the Feynman Diagrams of via a dedicated set of Feynman
Rules. Examples on how to computeR2 are reported in [160] and [161, 162]. The Rational TermsR1

are generated by the following extra integrals, introducedin [85,86]
∫
dnq̄

q̃2

D̄iD̄j
= − iπ

2

2

[
m2

i +m2
j −

(pi − pj)
2

3

]
+ O(ǫ) ,

∫
dnq̄

q̃2

D̄iD̄jD̄k
= − iπ

2

2
+ O(ǫ) ,

∫
dnq̄

q̃4

D̄iD̄jD̄kD̄l
= − iπ2

6
+ O(ǫ) . (61)

The coefficients of the above integrals can be computed by looking at the implicit mass dependence
(namely reconstructing thẽq2 dependence) in the coefficientsd, c, b of the one-loop functions, oncẽq2 is
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reintroduced through the mass shiftm2
i → m2

i − q̃2. One gets

b(ij; q̃2) = b(ij) + q̃2b(2)(ij) , c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) . (62)

Furthermore, by defining

D(m)(q, q̃2) ≡
m−1∑

i0<i1<i2<i3

[
d(i0i1i2i3; q̃

2) + d̃(q; i0i1i2i3; q̃
2)
] m−1∏

i6=i0,i1,i2,i3

D̄i , (63)

the following expansion holds

D(m)(q, q̃2) =
m∑

j=2

q̃(2j−4)d(2j−4)(q) , (64)

where the last coefficient is independent onq

d(2m−4)(q) = d(2m−4) . (65)

In practice, once the4-dimensional coefficients have been determined, one can redo the fits for different
values ofq̃2, in order to determineb(2)(ij), c(2)(ijk) andd(2m−4). Such three quantities are the coef-
ficients of the three extra scalar integrals listed in Eq. (61), respectively. Therefore, the OPP method
allows an easy and purely numerical computation of the Rational Terms of typeR1.

7.3 CutTools and the problem of the Numerical Inaccuracies

A FORTRAN90 program (CutTools) implementing the OPP method can be found in [93], to which
we refer for more details. We just mention that the only information needed by the code is the number
and type of contributing propagators and the numerator function N(q) (and its maximum rank). A
particularly interesting feature of the OPP technique, also implemented inCutTools, is that it allows
a natural numerical check of the accuracy of the whole procedure. Given the paramount importance of
this issue in practical calculations, we describe it here insome detail.

During the fitting procedure to determine the coefficients, numerical inaccuracies may occur due
to

1) appearance of Gram determinants in the solutions for which 4, 3, 2 or 1 denominators vanish;

2) vanishing of some of the remaining denominators, when computed at a given solution;

3) instabilities occurring when solving systems of linear equations;

In principle, each of these three sources of instabilities can be cured by performing a proper expansion
around the problematic (i.e.exceptional) Phase-Space point. However, this often results in a huge
amount of work that, in addition, spoils the generality of the algorithm. Furthermore, one is anyway
left with the problem of choosing a separation criterion to identify the region where applying the proper
expansion rather than the general algorithm.

The solution implemented inCutTools is, instead, of a purely numerical nature and relies on a
unique feature of the OPP method: the fact that the reductionis performed at the integral level. In detail,
the OPP reduction is obtained when, as in Eq. (57), the numerator functionN(q) is rewritten in terms of
denominators. ThereforeN(q) computed for some arbitrary value ofq by using the l. h. s. of Eq. (57)
should always benumericallyequal to the result obtained by using the expansion in the r. h. s. This is
a very stringent test that is applied inCutTools for any Phase-Space point. When, in anexceptional
Phase-Space point, these two numbers differ more than a userdefined quantity, the coefficients of the
loop functionsfor that particular pointare recomputed by using multi-precision routines (with up to
2000 digits) contained inCutTools [163, 164]. The only price to be payed by the user is writing,
beside the normal ones (namely written in double-precision), a multi-precision version of the routines
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computingN(q). The described procedure ensures that the coefficients of the scalar loop functions are
computed with a precision defined by the user. Finally, one should mention that, usually, only very few
points are potentially dangerous, namelyexceptional, so that a limited fraction of additionalCPU time is
used to cure the numerical instabilities, therefore compensating the fact that the multi-precision routines
are by far much slower than the normal ones. This procedure has been shown to work rather well in
practice, as we shall see in the next section.

7.4 pp→ ZZZ at one-loop

The calculation is composed of two parts: the evaluation of virtual corrections, namely one-loop con-
tributions obtained by adding a virtual particle to the tree-order diagrams, and corrections from the real
emission of one additional massless particle from initial and final states, which is necessary in order
to control and cancel infrared singularities. The virtual corrections are computed using theOPP reduc-
tion [85,86]. In particular, we make use ofCutTools [93]. Concerning the contributions coming from
real emission we used the dipole subtraction method [165] toisolate the soft and collinear divergences
and checked the results using the phase space slicing method[166] with soft and collinear cutoffs, as
outlined in [167].

These results have also been recently presented, followinga very different approach, by Lazopou-
loset al in Ref. [168]. A more complete study, that will also include the case ofW+W−Z,W±ZZ, and
W+W−W± production, will be presented in a forthcoming publication[169].

Let us begin with the evaluation of the virtual QCD corrections to the processqq̄ → ZZZ. We
consider the process

q(p1) + q̄(p2) −→ Z(p3) + Z(p4) + Z(p5) (66)

All momenta are chosen to be incoming, such that
∑

i pi = 0.

p2

p1

p3

p4

p5

Fig. 10: Tree-level structure contributing toqq̄ → ZZZ.

At the tree-level, there are six contributions to this process, obtained by the diagram illustrated in
Fig. 10 by permuting the final legs in all possible ways. One-loop corrections are obtained by adding
a virtual gluon to the tree-level structures, as depicted inFig. 11. Each of the eight diagram of Fig. 11
should be evaluated for six permutations of the final particles: overall this calculation involves the reduc-
tion of 48 diagrams.

We perform a reduction to scalar integrals using theOPP reduction method [85,86]. As described
in Section 7.2, we need to provide the numerical value of the numerator of the integrand in the loop
integrals. The numerator functionN(q) can be expressed in terms of 4-dimensional denominatorsDi

according to the decomposition of Eq. (57). For the particular case of five denominators, that is the
relevant case for the process studied in this paper, we havem = 5 and the indices range from0 to 4.
Next, simply by evaluating the numerator functionN(q) for a given set of values ofq, we can extract all
the coefficients in Eq. (57).

The coefficients determined in this manner should be multiplied by the corresponding scalar in-
tegrals. Since, in the process that we are studying, noq-dependent massive propagator appears, we
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Fig. 11: Diagrams contributing to virtual QCD corrections to qq̄ → ZZZ

will only need massless scalar integrals. They are computedusing the packageOneLOop written by
A. van Hameren [112].

As an example, let us consider the pentagon diagram (the lastdiagram of Fig. 11). In our notation,
the integrand will read

A5(q) =
N5(q)

[q2][(q + p1)2][(q + p1 + p5)2][(q − p2 − p3)2][(q − p2)2]
(67)

with

N5(q) =
{
ū(p2) γ

α P(q−p2) V
Z
3 P(q−p2−p3) V

Z
4 P(q+p1+p5) V

Z
5 P(q+p1) γ

α u(p1)
}

(68)

The functionP (q) is the numerator of the quark propagator

P(q) = 6q +m,

while V Z
i = V Z · ǫi , namely the contraction between he polarization vector of the i-th Z bosonǫi and

theγ-matrix in the vertexZqq̄

V Z
µ = ieγµ(g−f ω− + g+

f ω+) (69)

where

g+
f = −s

c
Qf , g−f =

I3
W,f − s2Qf

sc
, ω± = (1 ± γ5)/2 . (70)

For any fixed valueq0 of integration momentum, and for a given phase-space point,N5(q0) is simply the
trace of a string of known matrices. After choosing a representation for Dirac matrices and spinors, we
evaluateN(q) by performing a naive matrix multiplication. By providing this input to the reduction algo-
rithm, we can compute all the coefficients of the scalar integrals (in other words, the “cut-constructible”
part of the calculation).

The last step is the calculation of Rational Terms. As explained in Section 7.2, part of this con-
tribution, that we callR1, is automatically included by the to the reduction algorithm. The second term
R2, coming from theǫ-dimensional part ofN5(q), has been added by hand by looking at the Feynman
Diagram and turns out to be proportional to the tree-order amplitude.

In the same fashion, we can repeat the calculation for the other seven diagrams. However, our
method allows for a further simplification: for each fixed permutation of the final legs, only the q-
dependent denominators of Eq. (67) will appear in the remaining diagrams. Therefore, we can combine
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all diagrams in a single numerator function and perform the reduction directly for the sum of such dia-
grams, allowing for a one-shot evaluation of the resulting scalar coefficients.

We checked that our results, both for poles and finite parts, agree with the results obtained by the
authors of Ref. [168].

In what concerns the real emission, we only have to deal with initial state singularities, where we
distinguishqq̄ andqg initial states. For theqg initial state, no soft singularity is present because the
corresponding tree-level contribution vanishes. We recall that the structure of the NLO partonic cross
sections is as follows:

σNLO
qq̄ =

∫

V V V

[
dσB

qq̄ + dσV
qq̄ + dσC

qq̄ +

∫

g

dσA
qq̄

]
+

∫

V V V g

[
dσR

qq̄ − dσA
qq̄

]

σNLO
gq =

∫

V V V

[
+dσC

gq

∫

g

dσA
gq

]
+

∫

V V V g

[
dσR

gq − dσA
gq

]
, (71)

wheredσB, dσV , dσC , dσR, dσA are respectively the Born cross section, the virtual, virtual counterterm,
real and real-subtraction cross sections. For theqq̄ initial state two dipoles are needed as subtraction
terms. Ifp6 is the momentum which can become soft or collinear, the dipole term for gluon emission off
the quark is given by

Dq1g6,q̄2 =
8παsCF

2x̃ p1 · p6

(
1 + x̃2

1 − x̃

)
|MB

qq̄({p̃})|2 (72)

x̃ =
p1 · p2 − p2 · p6 − p1 · p6

p1 · p2

where the{p̃} are redefined momenta,{p̃j} = {p̃16, p̃2, p̃3, p̃4, p̃5}, which are again on-shell and go to
{p1, . . . , p5} in the singular limit, e.g.̃p16 = x̃ p1. The regularised real emission part then reads

dσR
qq̄ − dσA

qq̄ =
1

6

1

N

1

2s12

[
CF |MR

qq̄({pj})|2 −Dq1g6,q̄2 −Dq̄2g6,q1

]
dΦV V V g ,

where the factor1/6 accounts for the three identical bosons in the final state. More details can be found
in [165,169].

The hadronic differential cross section with hadron momentaP1 andP2 is the sum over all partonic
initial states convoluted with the parton distribution functions

dσ(P1, P2) =
∑

ab

∫
dz1dz2fa(z1, µF )fb(z2, µF )dσab(z1P1, z2P2) , (73)

where the sum runs over the partonic configurationsqq̄, q̄q, gq, qg, gq̄, q̄g.

7.4.1 Numerical results

As an explicit example we present the numerical results for the caseuū → ZZZ for
√
s = 14 TeV

and using CTEQ6L1 [18]. The tree-order cross section has been evaluated using theHELAC event
generator [170–172]. In the following table the results in fb are presented for the tree-order cross section
σ0, the ratio of the virtual to the tree-level cross section, and the real contribution, combining5− and
6−point contributions, as described above, for all channels,i.e., uū, ug, gū, for different values of the
factorization(renormalization) scale (µ = µF = µR).
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scale σ0 σV /σ0 σR σNLO

µ = MZ 1.481(5) 0.536(1) 0.238(2) 2.512(2)
µ = 2MZ 1.487(5) 0.481(1) 0.232(2) 2.434(2)
µ = 3MZ 1.477(5) 0.452(1) 0.232(2) 2.376(2)
µ = 4MZ 1.479(5) 0.436(1) 0.232(2) 2.355(2)
µ = 5MZ 1.479(5) 0.424(1) 0.237(2) 2.343(2)

As it is evident from these results, theK−factor is quite sizable(1.58 − 1.69), whereas the
dependence on the scaleµ is for both cases quite weak, due mainly to the electroweak character of the
process.

σ
[fb

]

1.5 2 2.5 3 3.5 4 4.5 5
1.25

1.5

1.75

2

2.25

2.5

2.75

µ/MZ

Fig. 12: Scale-dependence of the cross sectionσNLO (solid line) compared with the tree-level cross sectionσ0 (dashed line).

The scale is reported in the plot in units ofMZ , from µ = MZ to µ = 5MZ .

7.5 Conclusions

We presented a new method for NLO processes (OPP), in which the reduction to known integrals is
performed at the integrand level. The method has been successfully tested in a number of applications,
the latest being the production of three Z bosons at the LHC.

The efficiency of the method is quite good. It can be further improved if the numerical evaluation
of the integrand in the one-loop amplitude, by means of recursion relations, without relying on Feynman
diagrams, is developed [57].

In general, the speed, the precision and the simplicity of the OPP method, make it a very good
candidate for the construction of a universal NLO calculator/event-generator.
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Part II

IMPROVEMENTS ON STANDARD
TECHNIQUES

8. GOLEM: A SEMI-NUMERICAL APPROACH TO ONE-LOOP AMPLITUDES 14

8.1 Introduction

The first collision data from the Large Hadron Collider (LHC)at CERN are expected in a couple of
months, giving us the opportunity to explore unprecedentedenergies and luminosities. However, in
order that a discovery of New Physics can be claimed, it is of crucial importance to have the Standard
Model physics under control. This includes e.g. understanding of the detectors, the underlying event,
the luminosity determination, the jet energy scale [173]. For most of these issues, an interplay between
measurements and precise theory predictions is mandatory.In a hadron collider environment, multi-
particle/jet final states will be produced in abundance. Therefore considerable effort needs to be spent
to make predictions for multi-particle processes beyond the leading order. While the calculation of one-
loop five-point amplitudes can be considered as the state of the art at the moment, the first complete cross
section for six-point processes at hadron colliders still awaits its completion. Many different approaches
to multi-particle production have been developed in the last few years, most of them being described in
these proceedings. For other reviews and very recent developments, see e.g. [93,122,174].

Here we will focus on a method implemented in the programGOLEM (General One-Loop Eval-
uator of Matrix elements), which is based on a semi-numerical evaluation of building blocks stemming
from the reduction of one-loop Feynman diagrams [175]. The main features of the formalism are the
following:

• It is valid for massive and massless particles

• ForN > 5 external legs, the reduction of rankR N -point integrals is done algebraically, reducing
the rank and the number of propagators at the same time in eachreduction step. ForN ≤ 5
we worked out form factor representations which allow to avoid inverse Gram determinants in
exceptional kinematic regions.

• The infrared divergences are easily extracted analytically in terms of triangles.

• The rational parts of the amplitudes are obtained as by-products and can be projected out.

• The program has an analytic and a numerical branch: it can perform a complete reduction to
scalar integrals, represented in terms of analytic functions: such a complete reduction introduces
inverse Gram determinants, but this branch can be chosen safely in phase space regions where the
Gram determinants are sufficiently large (which is the bulk of the phase space). As the evaluation
of analytic functions is fast, this speeds up the program considerably as compared to a purely
numerical approach. Near exceptional phase space points, the program allows to stop the reduction
beforedangerous denominators are produced. The building blocks to evaluate in this case are
finite three- and four-point functions with Feynman parameters in the numerator. As a brute-
force numerical evaluation of the four-point functions is rather slow, we have worked out one-
dimensional integral representations, whose numerical evaluation is extremely fast. Details will
be given in the following section.

We have implemented the reduction in algebraic manipulation programs and have obtained fully an-
alytical results for several amplitudes using these methods [2, 84, 176–179]. Without having efficient
and automated simplification methods to reduce the size of big analytic expressions, the fully analytic
approach based on form factors suffers from factorial complexity and therefore does not seem to be

14Contributed by: C. Bernicot, T. Binoth, J.-Ph. Guillet, G. Heinrich, E. Pilon, T. Reiter
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appropriate for 6-point processes. The semi-numerical reduction is preferable in this case. For the cal-
culation of the rational terms alone the situation is different, as the form factor representations simplify
considerably when restricted to terms which can generate rational parts [83].

8.2 Results

Below we will describe applications of our method to one-loop six-point amplitudes and explain in detail
certain features which guarantee a fast and numerically robust evaluation in all phase space regions.

8.2.1 The GOLEM numerical library

In theGOLEM library, the strategy is to evaluate numerically higher dimensional three- and four-point
functions in phase space regions where numerical instabilities arise due to spurious singularities. To be
specific, these integrals are six- and eight-dimensional four-point functionsID+2

4 , ID+4
4 , and four- and

six-dimensional three-point functionsID
3 , I

D+2
3 , with or without Feynman parameters in the numerator.

While the triangles are two-dimensional integrals in Feynman parameter space, the boxes a priori involve
integration over three Feynman parameters. As numerical integrations in multi-dimensional parameter
space are rather slow, we worked out one-dimensional integral representations for these integrals, whose
evaluation is both fast and precise. In [175,180] we have already presented other methods for the numer-
ical evaluation of Feynman parameter integrals, but the one-dimensional representations discussed here
are preferable, as they are much faster.

As an example, let us consider the case where two massive particles scatter into two light particles
via a fermion loop. The two ingoing particles have a small velocity. In this kinematic region, the Gram
determinant is small. In this case, we have to evaluate four-point functions with two adjacent massive
legs, and with Feynman parameters in the numerator. In fig. 13we plot the six-dimensional four-point
function with two adjacent massive legs,I6

4,adj, against the absolute value of the coefficientB which is
proportional to the ratiodet(G)/det(S), for a trajectory of points with10−15 ≤ |B| ≤ 10−3.

In the GOLEM library, there is a cutc which allows to split the phase space regions where the
four-point function is evaluated analytically from those where it is evaluated numerically. The larger the
cut, the longer the evaluation takes, as more calls of the numerical integration routine are made. On the
other hand, if the cut is too small, the analytical evaluation causes a loss of precision of several digits.

As an illustration, we computeI6
4 (z1z

2
2) and we plot the real and imaginary parts for different

values of the cutc : c = 10−1 (Fig. 13),c = 10−3 (Fig. 14) andc = 10−5 (Fig. 15).

In the case at hand, the CPU time does not vary very much with the cut, the evaluation time ranges
from 0.14 s (on an Intel Pentium M 1.3 GHz) forc = 10−1 to 0.10 s forc = 10−5. However, this
statement is hard to generalise to all possible situations occurring in a calculation of a complex multi-leg
amplitude. In any case, the cutc allows to adjust the trade-off between speed and precision.

8.2.2 Theuū→ dd̄ss̄ amplitude

With our method we calculated the one-loop six-quark amplitude

A(u(p1, λ1), ū(p2, λ2) → d(p3, λ3), d̄(p4, λ4), s(p5, λ5), s̄(p6, λ6)) (74)

in massless QCD. The calculation has been carried out using spinor helicity amplitudes in the ’t Hooft-
Veltman scheme. We have chosen a convenient colour basis, which allows to split the amplitude as
follows

∑

λ

6∑

i=1

CiAλ
i (p1, . . . , p6), (75)
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Fig. 13:The six-dimensional four-point function with three Feynman parameters in the numerator,I6
4 (z1z

2
2), with two adjacent

massive legs and the cutc = 10−1.
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Fig. 14:The six-dimensional four-point function with three Feynman parameters in the numerator,I6
4 (z1z

2
2), with two adjacent

massive legs and the cutc = 10−3.

whereAc are the helicity and colour subamplitudes. In particular wechose the colour structures

(C1,C2,C3,C4,C5,C6) = (δc2
c1δ

c3
c4δ

c5
c6 , δ

c2
c1δ

c5
c4δ

c3
c6 , δ

c5
c1δ

c2
c4δ

c3
c6 , δ

c5
c1δ

c3
c4δ

c2
c6 , δ

c3
c1δ

c5
c4δ

c2
c6 , δ

c3
c1δ

c2
c4δ

c5
c6 ). (76)

In our notationλ is the vector(λ1, . . . , λ6), andλj = ±1 is the helicity of the particle with momentum
pj of which the colour index iscj . In the six-quark amplitude one can identify two independent helicites
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Fig. 15:The six-dimensional four-point function with three Feynman parameters in the numerator,I6
4 (z1z

2
2), with two adjacent

massive legs and the cutc = 10−5.

λa = (+,+,+,+,+,+) andλb = (+,+,+,+,−,−); all other helicities are either identically zero or
related toλa or λb by parity invariance, which is exploited in our calculation.

We generated the Feynman diagrams for this process withQGraf [155] and reduced the tensor
integrals usingFORM [156,181] to form factors as defined in [175]. We deal with thespinor algebra by
completing spinor lines to traces, e.g. for an arbitrary productΓ of Dirac matrices we use

〈
p+

i

∣∣Γ
∣∣∣p+

j

〉
=

1

2[pjq]〈qpi〉
tr{(1 + γ5) 6pj 6q 6piΓ}. (77)

With the help ofFORMandJavacode the expressions for the diagrams are transformed into aFortran90
program. TheGolem90 library is used for the numerical evaluation of the form factors. In this approach
we found it advantageous to treat the spinor traces numerically as well, in order to keep the expressions
more compact.

The code returns the subamplitudes in the form

Aλ
i (p1, . . . , p6) =

g6
s

4π2

1

s

(
A

ε2
+
B

ε
+ C + O(ε)

)
(78)

for each of the six colour structures and for all non-zero helicities, whereA, B andC are complex
coefficients. As an example we plot in Figure 16 the quantitys|Aλ

c |α−3
s for one colour structureC1 and

the two helicity configurationsλa andλb. The initial state momenta are chosen to be along thez-axis
while the final state momenta have been rotated about they-axis by an angleθ. Forθ = 0 the momenta
are chosen as in Ref. [182]:

~p3 = (33.5, 15.9, 25.0)

~p4 = (−12.5, 15.3, 0.3)

~p5 = (−10.0,−18.0,−3.3)

~p6 = (−11.0,−13.2,−22.0) (79)
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Fig. 16: The six-quark amplitude. The finite parts of the Laurent expansion inε of s|Aλa

1 |α−3
s (solid) ands|Aλb

1 |α−3
s (dashed)

are plotted for a kinematic point defined in the text, where the final state momenta have been rotated about they-axis by an

angleθ.

c A B C

1 −0.0029670 − 0.0036065i 0.0203701 + 0.0281510i −0.0659100 − 0.1057940i
2 0.0042784 + 0.0049474i −0.0191448 − 0.0420120i 0.0338141 + 0.1820798i
3 −0.0123663 − 0.0186981i 0.1171088 + 0.1401148i −0.4902357 − 0.4754639i
4 0.0051836 + 0.0066459i −0.0462621 − 0.0477458i 0.1803702 + 0.1706208i
5 −0.0143367 − 0.0137603i 0.1282264 + 0.1049820i −0.5199953 − 0.3972433i
6 0.0083400 + 0.0100456i −0.0745825 − 0.0730179i 0.2929410 + 0.2459317i

Table 3: Six-quark amplitude. Numerical values of the virtual partAλa

c ({pj}j=1...6)α
−3
s for the kinematics given in the text

andθ = 0.

In the chosen units the renormalisation scale isµ = 1. The amplitude has been evaluated at 50 successive
points betweenθ = 0 andθ = 2π (θ = 0, 0.126, 0.252, . . . ), which took 2.4 seconds per point and
helicity on an Intel Pentium 4 CPU (3.2 GHz). Table 3 shows thenumerical values of all coefficients for
the pointθ = 0.
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9. ISSUES WITH THE LANDAU SINGULARITIES 15

9.1 Introduction

Cross sections involving a large number of external particles can contain numerical instabilities which
must be carefully located and controlled. At tree-level onecan mention integration over at-channel
pole if the integration variables are not properly chosen. The crossing of a resonance might also be
problematic. Beside these physical situations there mightbe fake singularities specific to the way one
has set up the amplitude; one example is the singularity brought about by an unlucky choice of a reference
vector at the helicity amplitude level. These problems are exacerbated at the loop level since the loop
integrals can also develop singularities. A prominent example is the occurrence of vanishing inverse
Gram determinants: see for example the contribution of Denner and Dittmaier. The latter is a fake
singularity that can be met for some special, and simple, kinematical conditions on the phase space
of the external particles having to do with how one has chosenone’s (independent) basis for the loop
integrals and how one has subsequently expressed the other loop integrals in this basis. Loop integrals
can also havetrue singularities that have an underlying physical origin. They depend on the dynamics
of the problem. Thresholds are one example, though harmlessand trivial to locate. These types of
singularities belong to the general class of Landau singularities. The physical singularity can be revealed
by studying the analytic properties of the scalar integral.Here we study the case of one-loop integrals.
In particular we will review how the conditions for having such singularities can be derived, especially
in a format that is conducive to an easy implementation in a computer code. When such a singularity
is present it is important to inquire whether this singularity is integrable or not. We rederive here the
singular part. We then consider two specific complementary examples taken from the recent literature.
The first one, the electroweak corrections topp → bb̄H, reveals a Landau singularity having to do with
massive, indeed unstable, particles in the loop. In this case the singularity is smoothed out by the width
of the unstable particles. The second is the6-photon amplitude which involves massless states, both
internally and externally. In this case the Landau determinant is a quadratic function whose square root
is proportional to the Gram determinant.

9.2 Conditions for a Landau singularity and the nature of thesingularity

Consider the one-loop processF1(p1) +F2(p2) +
. . . + FN (pN ) → 0, whereFi stands for either a
scalar, fermion or vector field with momentumpi

as in the figure opposite. The internal momentum
for each propagator isqi with i = 1, . . . N . Each
momentumqi is associated with one Feynman pa-
rameterxi respectively. The scalar loop integral
reads

TN
0 ≡

∫
dDq

(2π)Di

1

D1D2 · · ·DN
,

Di = q2i −m2
i + iǫ, qi = q + ri,

ri =
i∑

j=1

pj , i = 1, . . . , N, (80)

m1m2

q2 q1

p1

pN
p2

15Contributed by: C. Bernicot, F. Boudjema, J.P. Guillet, N.D. Le, E. Pilon

46



The Feynman parameter representation reads

TN
0 = Γ(N)

∫ ∞

0
dx1 · · · dxNδ(

N∑

i=1

xi − 1)

∫
dDq

(2π)Di

1

(x1D1 + x2D2 + · · ·xNDN )N
. (81)

Because of the Dirac delta function, the integration boundary in the Feynman parameter space arexi = 0,
i = 1, . . . , N . Thus the only important condition onxi is that they are not negative.The singularities
are given by the Landau conditions [113,183]

{ ∀i xi(q
2
i −m2

i ) = 0,∑N
i=1 xiqi = 0.

(82)

If eq. (82) has a solutionxi > 0 for everyi ∈ {1, . . . , N}, i.e. all particles in the loop are simultaneously
on-shell, then the integralTN

0 has a leading Landau singularity (LLS). If a solution existsbut with some
xi = 0 while the otherxi’s are positive, the Landau condition corresponds to a lower-order Landau
singularity (LOLS).

By introducing the matrixQ, under the conditionq2i = m2
i ,

Qij = 2qi.qj = m2
i +m2

j − (qi − qj)
2 = m2

i +m2
j − (ri − rj)

2; i, j ∈ {1, 2, . . . ,M}, (83)

the conditions to have a Landau singularity in the physical region are

{
det(Q) = 0,
xi > 0, i = 1, . . . ,M.

(84)

ForM = N one has a leading singularity, otherwise ifM < N this is a subleading singularity. If some
internal (external) particles are massless, as in the case of six-photon scattering, then someQij are zero,
and the above conditions can be easily checked. However, if the internal particles are massive then it is
difficult to check these conditions explicitly, especiallyif M is large. In this case, we can rewrite the
above conditions as follows

{
det(Q) = 0,

xj = det(Q̂jM )/det(Q̂MM ) > 0, j = 1, . . . ,M − 1,
(85)

whereQ̂ij is obtained fromQ by discarding rowi and columnj from Q. Note thatdet(Q̂MM ) =
d[det(Q)]/dQMM . If det(Q̂MM ) = 0 then the second condition in (85) becomesdet(Q̂jM ) = 0
with j = 1, . . . ,M − 1. There may be cases, as we will encounter in section 9.4, where the Landau
determinantdet(Q) has a quadratic form. These special situations have to be handled with care.

The existence of a Landau singularity corresponds to an eigenvector ofQ with zero eigenvalue. In
general,Q hasN real eigenvaluesλ1, . . . , λN . Consider the case whereQ has only one(non-degenerate)
very small eigenvalueλN ≪ 1. To leading order

λN =
a0

a1
, a1 = λ1λ2 . . . λN−1 6= 0, a0 = det(Q). (86)

With V = {x0
1, x

0
2, . . . , x

0
N} the eigenvector corresponding toλN , we defineυ2 = V · V . We will

assume thatλi > 0 for i = 1, . . . ,K andλj < 0 for j = K + 1, . . . , N − 1 with 0 ≤ K ≤ N − 1. It
can then be shown that inD dimensions,

TN
0 =

(−1)Neiπ(N−K−1)/2υ

23D/2−N
√

(−1)N−K−1a1

π(N−D−1)/2Γ((N −D + 1)/2)

(λNυ2 − iε)(N−D+1)/2
. (87)
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This result holds provideda1 6= 0 andN −D+ 1 > 0. For the box,N = 4,D = 4, a0 → 0 anda1 6= 0
we get

(T 4
0 )div =

eiπ(3−K)/2

4
√

(−1)3−K det(Q4) − iε
. (88)

This shows that(T 4
0 )div is integrable but its square is not.

In the caseN = 3 (the triangle),D = 4, it is possible to derive

T 3
0 =

−eiπ(2−K)/2υ

8π
√

(−1)2−Kλ1λ2

ln(λ3υ
2 − iε) (89)

T 3
0 and its square are therefore integrable.

9.3 gg → bb̄H

The first example we study is the electroweak corrections topp → bb̄H [184] where the one-loop
amplitude squared, which is all that remains in the limit of vanishing bottom Yukawa coupling, develops
a Landau singularity which represents the rescattering of the top pair and their decay into aW pair that
produces the Higgs throughWW fusion. As we will see, in this example, introducing the width of the
internal top andW particles smoothes the singularity. There is a leading Landau singularity present in
the box diagram shown in Fig. 17 that occurs for some specific values of the kinematic variables.

(g, p1)

(g, p2)
(t, q4)

(t, q3)

(b, p3)

(b, p4)

(H, p5)

(W, q2)

(W, q1)

Fig. 17: A box diagram contributing togg → bb̄H that can develop a Landau singularity forMH ≥ 2MW and
√

s ≥ 2mt,

i.e. all the four particles in the loop can be simultaneouslyon-shell.

With g(p1)+g(p2) → b(p3)+b̄(p4)+H(p5), s = (p1+p2)
2, s1 = (p3+p5)

2, s2 = (p4+p5)
2,

and the on-shell conditionsp2
1 = p2

2 = 0, p2
3 = p2

4 = m2
b = 0, p2

5 = M2
H , fixing s andMH , the scalar

box integral is a function of two variabless1,2

T 4
0 (s1, s2) = D0(M

2
H , 0, s, 0, s1, s2,M

2
W ,M2

W ,m2
t ,m

2
t ). (90)

The kinematically allowed region is

M2
H ≤ s1 ≤ s, M2

H

s

s1
≤ s2 ≤M2

H + s− s1. (91)

The reduced matrix,S(4), which is equivalent in this case to theQ matrix for studying the Landau
singularity, is given by

S
(4)
ij =




1
2M2

W−M2
H

2M2
W

m2
t +M2

W−s1

2MW mt

M2
W +m2

t

2MW mt

2M2
W−M2

H

2M2
W

1
M2

W +m2
t

2MW mt

m2
t +M2

W−s2

2MW mt

m2
t +M2

W−s1

2MW mt

M2
W +m2

t

2MW mt
1

2m2
t−s

2m2
t

M2
W +m2

t

2MW mt

m2
t +M2

W−s2

2MW mt

2m2
t−s

2m2
t

1



, S

(4)
ij =

Qij

2mimj
. (92)
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The singularity corresponds todet(S(4)) = 0. The determinant is a quadratic function ofs1, s2 when
s and all internal masses are fixed. The Landau determinant, the real and imaginary parts ofT 4

0 are
displayed in Fig. 18 for

√
s = 353 GeV,MH = 165 GeV,mt = 174 GeV,MW = 80.3766 GeV.

We clearly see that the Landau determinant vanishes inside the phase space and leads to regions of
instability exhibiting leading and lower-order Landau singularities in the real and imaginary parts of
the scalar integral. To investigate the structure of the singularities in more detail let us fix

√
s1 =

Fig. 18: The Landau determinant as a function ofs1 ands2 (upper figure). The real and imaginary parts ofD0 as a function

of s1 ands2.

√
2(m2

t +M2
W ) ≈ 271.06 GeV, so that the properties are studied for the single variable s2. The results

are shown in Fig. 19.

From Fig. 19 we see that there are four discontinuities in thefunction representing the real part
of the scalar integral in the variable

√
s2. As s2 increases we first encounter a discontinuity at the

normal threshold
√
s2 = mt +MW = 254.38 GeV. This corresponds to the solution (for the Feynman

parameters)x1,3 = 0 andx2,4 > 0 of the Landau equations. The second discontinuity occurs atthe
anomalous threshold

√
s2 = 257.09 GeV of a reduced triangle diagram. This corresponds to the solution

x3 = 0 andx1,2,4 > 0 of the Landau equations. The condition of vanishing determinantdet(S3) = 0 for
this triangle has two solutions

s2 =
1

2M2
W

(
M2

H(m2
t +M2

W ) ∓MH

√
M2

H − 4M2
W (m2

t −M2
W )

)
(93)
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Fig. 19:The imaginary, real parts ofD0 and the Landau determinant as functions ofs2.

which gives
√
s2 = 257.09 GeV(inside of phase space) and297.86 GeV(outside of phase space). We

can also check that the former value satisfies the sign condition in (85) while the latter does not. Note
that one of the conditions for this anomalous threshold to occur in the physical region isMH ≥ 2MW ,
see Eq. (93). The same phenomenon happens for the third discontinuity at

√
s2 = 259.58 GeV

which corresponds to the anomalous threshold of the reducedthree point function obtained from the
box diagram by contracting to a point thex1 line. The last singular discontinuity is the leading Lan-
dau singularity. The conditiondet(S4) = 0 for the box has two solutions which numerically corre-
spond to

√
s2 = 263.88 GeV or

√
s2 = 279.18 GeV. Both values are inside the phase space, see

Fig. 19. However after inspection of the corresponding signcondition only
√
s2 = 263.88 GeV (with

x1 ≈ 0.533186, x2 ≈ 0.748618, x3 ≈ 0.774941) qualifies as a Landau singularity.
√
s2 = 279.18 GeV

hasx1 ≈ −0.742921, x2 ≈ −0.748618, x3 ≈ 1.06537. The nature of the leading Landau singularity in
Fig. 19 can be extracted by using the general formula (88). With the input parameters given above, the
Landau matrix has only one positive eigenvalue at the leading singular point,i.e. K = 1. The leading
singularity behaves as

Ddiv
0 = − 1

16M2
Wm2

t

√
det(S4) − iε

. (94)

When approaching the singularity from the left,det(S4) > 0, the real part turns singular. When we
cross the leading singularity from the right,det(S4) < 0, the imaginary part of the singularity switches
on, while the real part vanishes. In this example, both the real and imaginary parts are singular because
det(S4) changes sign when the leading singular point is crossed.

The instabilities of the integral and the singularities aredue to the unstable internal particles. The
problem can be remedied by introducing the finite width of theW and top. As seen from Fig. 20,
introducing the finite width effect in the scalar box gives a smooth behaviour.

9.4 The six photon amplitude

The second example concerns a case with massless internal particles involving massless external parti-
cles: the6-photon amplitude [185], see also [84,86,182]. Although the scalar integrals for the6-photon
amplitude have a potential Landau singularity that leads tosome characteristic patterns of the amplitude,
direct calculations of the helicity amplitudes show that the singularity is tamed by the dynamics of the
gauge interaction in a somehow unexpected way. This is welcome since we would not able, in this case,
to revert to the trick of introducing a width for the particles. This said, introducing non-zero (internal)
masses, as would be fit for the couplings of the massless photons, would regulate a vanishing Landau
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Fig. 20:Effect of the combined width of theW , ΓW and the top,Γ − t, to the real and imaginary part of the scalar function.

determinant, but would of course still pose a considerable numerical problem if the singularity from the
vanishing Landau determinant is not counterbalanced by thespin and gauge algebra.

To be able to see the cancellation at the level of the amplitude is only possible if one has very
compact analytical expressions for these amplitudes. In our investigation the expressions for the ampli-
tudes [185] are based on the unitarity-cut methods and are made particularly simple thanks to the fact that
the six-photon amplitude has no IR/UV divergences and no rational terms. The six-photon amplitude was
calculated in three models: i) scalarQED, Ascalar

6 , ii) spinorQED: Afermion
6 and iii) supersymmetric

QED N = 1: AN=1
6 . The three amplitudesAscalar

6 , Afermion
6 andAN=1

6 are in fact related through:

Afermion
6 = −2Ascalar

6 +AN=1
6 (95)

Full compact expressions for the amplitudes can be found in [185]. The potential Landau singular-
ity in the6-photon amplitude reveals itself in the so-called double parton scattering configuration [182],
see Fig. 21.

p1

p6 p2

p4

p5p3

q4

q3
q2

q1

Fig. 21: Double parton scattering configuration:p1, p4 are incoming photons with~p1 + ~p4 = ~0, each splits into a fermion pair which

rescatters to give photon pairs(p2, p6); (p3, p5) at very small, vanishing, transverse momentum.

The Landau conditions read

det(Q) = (s135s435 − s35s26)
2 → 0 , s35, s26 > 0 , s135, s435 < 0 (96)

wheresijk = (pi + pj + pk)
2, all thepi’s are taken as incoming. Note the specific nature ofdet(Q)

which has a quadraticform. This will lead to a double root (eigenvalue) at the singularity, or in other
words the derivative ofdet(Q) at the singularity is also vanishing. In factdet(Q) is proportional to the
square of the Gram determinant,det(G). To wit

det(G) = −2s14(s135s435 − s35s26) ∝
√

det(Q) (97)
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This property is due to the presence of many zeros, both from the kinematics of the external photons and
the masslessness of the internal lines.

How does the singularity of the scalar integral transpire atthe level of the amplitude? Let us turn to
the NMHV (−−−+++) six-photon helicity amplitude and specialise to the kinematics16 of the Nagy
and Soper configuration [182]. We start from a fixed point in phase space in the centre of mass frame
~p1 + ~p4 = ~0 with ~p4 along thez-axis:

{ −→p2 = (−33.5,−15.9,−25.0) −→p3 = (11.0, 13.2, 22.0)
−→p5 = (12.5,−15.3,−0.3) −→p6 = (10.0, 18.0, 3.3)

(98)

One can generate new configurations by rotating the final state about they-axis by an arbitrary angleθ.
We can then study the behaviour of the amplitude in this parameter. It is illuminating to rewritedet(Q)
in terms of this parameter for this particular configuration:

det(Q) =
(
s14 k

2
t

)2
with k2

t = p2
35 y + (p35 x cos θ + p35 z sin θ)2 (99)

wherep35 i = p3 i + p5 i, i = x, y, z. The minimum value ofkt is given byk2
t min = p2

35 y.

The behaviour of the amplitude as a function ofθ for this particular configuration is shown in
Fig. 22. The important conclusion to draw from Fig. 22 is thatthe structure of the amplitude, in particular
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Fig. 22: The NMHV amplitude as a function ofθ in the Nagy-Soper configuration in the case of QED (left) as well as the scalar andN = 1

SUSY(right). In the first panel we also show the dependence ofk2
t which is a good measure ofdet(Q).

the peculiar dips, is well tracked bydet(Q). Indeed the dips that show in the amplitude occur exactly at
the points wheredet(Q) is smallest. The dips occur atθ ≃ 2.32 andθ ≃ 2.32 + π ≃ 5.46. These values
can be derived from Eq. (99) wherekt = kt min.
One can ask what would happen in a configuration wherekt min and consequentlydet(Q) → 0? One
can arrive at thisdet(Q) → 0 configuration by perturbing the original kinematics in Eq. 98

{ −→p2 → −→
p′2 = (−33.5,−15.9 − ∆y,−25.0) −→p3 → −→

p′3 = (11.0, 13.2 + ∆y, 22.0)
−→p5 → −→

p′5 = (12.5,−15.3 + ∆y,−0.3) −→p6 → −→
p′6 = (10.0, 18.0 − ∆y, 3.3)

(100)

Theθ modulation is unchanged, such that the dips occur at the samelocation inθ. However now∆y can
be chosen such thatkt min = 0. This occurs for∆y = 1.05.

Figs. 23 show how the pattern of the amplitude, as far as the dip around the singularity atθ = 5.46
is concerned, evolves as∆y is varied from zero to1.05 wheredet(Q) andkt min vanish. It can be seen

16The correspondance between the kinematical conventions ofNagy and Soper and the one used here are the following:
Nagy and Soper consider the reactionγ+(p4) + γ−(p1) → γ−(−p6) + γ+(−p2) + γ+(−p3) + γ−(−p5) i.e. theirki’s and
ourpj are such that:k1 = p4, k2 = p1, k3 = −p2, k4 = −p5, k5 = −p6 andk6 = −p3 so thatk1 +k2 = k3 +k4 +k5 +k6.
See [185] for more details.
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Fig. 23:The six-photon amplitude around the Landau singularity characterised byθ aroundθ = 5.46 and for different values of the parameter

∆y that gives a measure ofkt,min in spinor QED (left) and inN = 1 susy QED (right).

that asdet(Q) → 0 with increasing∆y, the width of the dip decreases more and more so as to behave
as a sudden jump, with the oscillation pattern disappearingcompletely for∆y = 1.05. The numerators
of the six-photon amplitudes, reflecting the dynamics of thegauge interaction, vanish fast enough as the
Landau singularity is approached. Therefore the singularity seems to bedynamically regulatedfor the
three cases of the scalar, the fermion and the SUSY-amplitude.

It is also revealing to investigate how the apparent Landau singularity is approached from different
directions by considering a two-dimensional parameterisation of det(Q) and the kinematics.

We therefore modify the original Nagy-Soper parameterisation such as to generate a Landau sin-
gularity and add akt variable both along thex andy direction to follow the approach to the singularity:

{ −→p2 = (−33.5 − kt x,−15.9 − kt y,−25.0) −→p3 = (−12.5 + kt x, 15.3 + kt y, 22.0)
−→p5 = (12.5 + kt x,−15.3 + kt y,−0.3) −→p6 = (33.5 − kt x, 15.9 − kt y, 3.3)

(101)

Figs. 24 show the six-photon amplitudesAfermion/N=1
6 as functions of the two variableskt x andkt y.

Up to an overall rotation, the analytic structure of these amplitudes near the Landau singularity atkt x =
kt y = 0 can be modelled as

A6 ∼ kt x kt y

k2
t x + k2

t y

=
1

2
sin(2α) (102)

wherekt x = kt cosα, kt y = kt sinα, kt = (k2
t x + k2

t y)
1/2.

The amplitudes exhibit a valley and a ridge along mutually perpendicular axes crossing each other
at kt x = kt y = 0. The various profiles shown in Fig. 23 are nothing but cross sections at fixedkt y of
Fig 24. In particular, the profiles for∆y = 1.05 correspond tokt y = 0. More generally, when both
kt x andkt y approach0 simultaneously,A6 remains finite: the Landau singularity of the double parton
scattering type does not lead to a divergence∼ 1/k2

t as would have been naively expected from a general
power counting argument [183, 186]. Yet the limiting value of A6 depends on the directionα along
which the originkt x = kt y = 0 is approached.

9.5 Conclusions

We foresee that in the calculations of multi-leg one-loop processes the study of the Landau conditions will
bring very useful, if not crucial, information. More investigations of the properties of these singularities
need to be performed.
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Fig. 24:The six-photon amplitude in spinor QED (top) and inN = 1 QED (bottom) around the Landau singularity

10. TENSOR ONE-LOOP INTEGRALS IN EXCEPTIONAL PHASE-SPACE R EGIONS17

10.1 Introduction

At the LHC and ILC, many interesting processes involve more than four external particles. A thorough
description of such processes requires the evaluation of strong and electroweak radiative corrections
at least in next-to-leading order (NLO). The most complicated part in such calculations concerns the
numerically stable evaluation of the one-loop tensor integrals of the virtual corrections.

For processes with up to four external particles the classical Passarino–Veltman (PV) reduction
[157], which recursively reduces tensor to scalar integrals, is sufficient in practically all cases. This
scheme, however, involves Gram determinants in the denominator, which spoil the numerical stability
if they become small. With up to four external particles thishappens only near the edge of phase space
(forward scattering, thresholds). With more than four external particles, Gram determinants also vanish
within phase space, and methods are needed where Gram determinants can be small but still non-zero. In
this context it should be noticed that the described problemof inverse Gram (and related) determinants
occurs inall methods that reduce loop diagrams or amplitudes to the basisset of standard scalar integrals.
This, in particular, also applies to unitarity-based or bootstrap approaches that work at the analytical (see
e.g. Ref. [122] and references therein) or numerical [85,92,95,116,174] level. These methods certainly
mitigate the problem of cancellations, but cannot avoid it completely.

17Contributed by: A. Denner, S. Dittmaier
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In this article we inspect two benchmark phase-space pointsthat are inspired from our calculation
of electroweak (EW)O(α) corrections toe+e− → 4 fermions [187, 188].18 One of the two points
involves a small Gram determinant, the other involves both asmall Gram and a small “modified Cayley
determinant” at the same time. Although of course the real performance of proposed solutions can be
only be found out in full applications, i.e. when integrating loop corrections to complicated processes
over the whole phase space, a selection of such benchmark points is certainly a useful testground in the
development of loop techniques.

Several solutions to the problem of numerical instabilities due to inverse Gram determinants have
been proposed in recent years, but not many of them have proven their performance in complicated
applications yet. For references and descriptions of some methods alternative to ours, we refer to
Refs. [193,194].

10.2 Tensor coefficients and their reduction

We consistently follow the notations and conventions for scalar and tensor one-loop integrals introduced
in Refs. [193, 195]. Here we briefly repeat the conventions for 4-point integrals as required in the con-
sidered examples. Tensor 4-point integrals of rankP are defined as

Dµ1...µP =
(2πµ)4−D

iπ2

∫
dDq

qµ1 · · · qµP

N0N1N2N3
, Nk = (q + pk)

2 −m2
k + i0, p0 = 0, (103)

whereD is the number of space–time dimensions andµ the reference scale of dimensionional regular-
ization. The tensor integrals are decomposed into covariants as follows,

Dµ =
3∑

i1=1

pµ
i1
Di1 , Dµν =

3∑

i1,i2=1

pµ
i1
pν

i2Di1i2 + gµνD00,

Dµνρ =

3∑

i1,i2,i3=1

pµ
i1
pν

i2p
ρ
i3
Di1i2i3 +

3∑

i1=1

(gµνpρ
i1

+ gνρpµ
i1

+ gρµpν
i1)D00i1, (104)

and so on for higher rank. Up to rank 3, and only those are considered below, 4-point tensor integrals are
UV finite. The kinematical arguments of the coefficientsD..., which comprise all scalar productspipj

and internal massesmk, are written as

D... ≡ D...(p
2
1, (p2 − p1)

2, (p3 − p2)
2, p2

3, p
2
2, (p3 − p1)

2,m2
0,m

2
1,m

2
2,m

2
3). (105)

Conventional PV reduction [157] expresses the rank-P 4-point coefficients in terms of lower-rank 4- and
3-point coefficients. In each stepP → (P − 1) the inverse of the Gram matrix

Z =




2p1p1 2p1p2 2p1p3

2p2p1 2p2p2 2p2p3

2p3p1 2p3p2 2p3p3


 (106)

occurs, which causes the above-mentioned numerical problems if the determinant|Z| becomes small.
The highest negative power of|Z| occurs in the calculation of tensor coefficientsDi1i2... without “0”
indices, rendering them numerically the most delicate. In the following we also need the matrix

X =




2m2
0 f1 f2 f3

f1

f2

f3

Z


 , fk = p2

k −m2
k +m2

0. (107)

18Meanwhile the same methods have been successfully applied to NLO EW and QCD corrections to the Higgs decayH →
WW/ZZ → 4f [189,190] and to Higgs production via vector-boson fusion at the LHC [191,192].
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The vanishing of the modified Cayley determinant|X| corresponds to necessary conditions for true
(Landau) singularities in a Feynman diagram. The minors (i.e. determinants of submatrices where row
i and columnj are discarded) of the matricesZ andX, respectively, are called̃Zij and X̃ij in the
following.

10.3 The “DD” approach

One-loop tensor integrals can be naturally grouped into three categories, which we have treated in com-
pletely different ways:

(i) For 1- and 2-point integralsof arbitrary tensor rank, numerically stable analytical expressions
are presented in Ref. [193] (see also Ref. [157]).

(ii) For 3- and 4-point tensor integrals, PV reduction [157] is applied for “regular” phase-space
points where Gram determinants are not too small. For the remaining problematic cases special reduction
techniques have been developed [193].

One of the techniques replaces the standard scalar integralby a specific tensor coefficient that can
be safely evaluated numerically and reduces the remaining tensor coefficients as well as the standard
scalar integral to the new basis integrals. In this scheme nodangerous inverse Gram determinants occur,
but inverse modified Cayley determinants instead. We note that the procedure is related to the fully
numerical method described in Ref. [196].

In a second class of techniques, the tensor coefficients are iteratively deduced up to terms that
are systematically suppressed by small Gram or other kinematical determinants in specific kinematical
configurations. The numerical accuracy can be systematically improved upon including higher tensor
ranks. In our previous applications the highest relevant tensor rank was improved only by one additional
iteration; in the results shown below we employ an new implementation of the methods where more than
ten additional iterations are included if relevant. A similar idea, where tensor coefficients are iteratively
determined from higher-rank tensors has been described in Ref. [197] for the massless case.

(iii) For 5- and 6-point integrals, direct reductions to 5- and 4-point integrals, respectively, are pos-
sible owing to the four-dimensionality of space-time. For scalar integrals such a reduction was already
derived in the 1960s [198]. In Refs. [193, 195] we follow basically the same strategy to reduce tensor
integrals, which has the advantage that no inverse Gram determinants appear in the reduction. Instead
modified Cayley determinants occur in the denominator, but we did not find numerical problems with
these factors. A reduction similar to ours has been proposedin Ref. [175].

We would like to stress two important features of our approach.

(i) The methods are valid for massive and massless cases. Theformulas given in Refs. [193,195]
are valid without modifications if IR divergences are regularized with mass parameters or dimension-
ally.19 Finite masses can be either real or complex.

(ii) The in/out structure of the methods is the same as for conventional PV reduction, i.e. no specific
algebraic manipulations are needed in applications. Therefore, the whole method can be (and in fact is)
organized as a numerical library for scalar integrals and tensor coefficients.

We conclude this overview with some comments resulting fromour experience collected in the
treatment of a full2 → 4 scattering reaction.

(i) For a specific point in a multi-particle (multi-parameter) phase space it is highly non-trivial to
figure out which of the various methods is the most precise. Itseems hopeless to split the phase space
into regions that are dedicated to a given method. Therefore, we estimate the accuracy for the different
methods at each phase-space point and take the variant promising the highest precision. The accuracy

19For the method of Ref. [195], this has been shown in Ref. [199].
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of the PV method is valued by checking symmetries and PV relations, and by estimating cancellations.
In the expansion approach, we estimate the number of valid digits based on the expected accuracy of
the expansions and possible numerical cancellations before the evaluation of the coefficients. In the
seminumerical approach, the integration error is propagated to the tensor coefficients, together with an
estimate of possible cancellations.

(ii) In a complicated phase space it may happen that none of the various methods is perfect or good
in some exceptional situations. Usually the correspondingevents do not significantly contribute to cross
sections. This issue can only be fathomed in actual applications. To be on the safe side, we employ the
two independent “rescue systems” with different advantages and limitations.

(iii) In view of this, figures as shown below are nice illustrations, but should always be taken with
a grain of salt. No matter how many of such figures are shown, they will never be exhaustive, so that no
quantitative conclusions on the overall precision of methods can be drawn.

10.4 Two benchmark phase-space points

In the following two examples of exceptional phase-space configurations are considered:20 one with
small Gram determinant|Z|, another with both|Z| and|X| small. These two cases were already qual-
itatively illustrated in Ref. [200], but without providingexplicit numbers. We also note that a complex
Z-boson mass was used there. Here we switch to a real-valued Zmass to make it easier for other groups to
compare with our numbers. For the sake of brevity, no resultsof the seminumerical method are included
below; such results are illustrated in Ref. [200].

10.4.1 A case with a small Gram determinant

Figure 25 defines the first benchmark point for a 4-point function in which the Gram determinant|Z|
becomes small. We compare results of PV reduction with results of the expansion in the small Gram
determinant as described in Section 5.4 of Ref. [193]. In theupper half of the figure a hexagon diagram
is shown that contains a box subdiagram with the considered kinematical configuration. The structural
diagram illustrates the kinematical assignment with internal masses and squared external momenta given
at the respective lines. The invariants near the arcs are thesquares of the sum of momenta flowing into
the two neighbouring external lines. The explicit values ofthe masses and invariants are given in the
figure. As indicated there, the Gram determinant vanishes ifthe invariantted̄ approaches the critical
valuetcrit, corresponding to an inner phase-space point. In the plots of Fig. 25 we show results on a
few tensor coefficients whented̄ is varied while keeping all other invariants fixed. The variation in ted̄
is translated into a variation of the dimensionless variablex = ted̄/tcrit − 1 where the exceptional point
with |Z| = 0 corresponds tox = 0.

It is clearly seen in the plot on the l.h.s. that the tensor coefficients calculated with PV reduction
show numerical instabilities for smallx, while the results of the expansion method behave smoothly.The
PV instabilities increase with increasing tensor rank. Theplot on the r.h.s. shows the relative difference
between the PV results and the corresponding “best” predictions, which are either obtained with the
PV or the expansion method. With decreasingx this difference rises because of the PV instabilities,
and for a sufficiently highx the difference becomes zero (and falls out of the plot range), because PV
reduction promises better accuracy there. It is essential to see a broad region inx where the difference
is small for each tensor coefficient. This region corresponds to the overlap in which both PV reduction
and the expansion method are trustworthy, the difference reflecting the uncertainty of the less precise
result. The plot suggests that both methods should be precise within a relative accuracy of about10−9

for the considered coefficients which go up to rank 3. As already mentioned for thex values of the
shown points, the error estimate of the expansion promises better precision, otherwise (for largerx) PV

20We have to restrict the set of numerical results to a few selected tensor coefficients; more results can be found under
http://wwwth.mppmu.mpg.de/members/dittmair/tensints/benchmarks.html .
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Full diagram:

e+

e−

e

µ−

ν̄µ

u

d̄

Z

Z

W

µ

d

Subdiagram:

0

0

MZ

0

0

ted̄

0

sν̄u

tēµ

sµν̄u

Relative deviations from ”best”

x

10−110−310−510−7

1

10−2

10−4

10−6

10−8

10−10

10−12

10−14improved by Gram expansion

(etc.) Passarino–Veltman reduction

D111

D11

D1

D0

Absolute predictions

x

10−110−310−510−7

Kinematics:

MZ = 91.1876GeV
sµν̄u = +2×104 GeV2

sν̄u = +1×104 GeV2

tēµ = −4×104 GeV2

tcrit =
sµν̄u(sµν̄u − sν̄u + tēµ)

sµν̄u − sν̄u

= −6×104 GeV2

|Z| → 0 ⇔
x ≡ ted̄/tcrit − 1 → 0

Fig. 25: A typical example for 4-point integrals with small|Z| (x → 0). The full diagram and the relevant subdiagram are

given above; absolute predictions (in arbitrary units) forsome tensor coefficients, relative deviations from PV reduction, and

the kinematic specifications are shown below. The precise kinematical assignment isD...(ted̄, sν̄u, 0, 0, tēµ, sµν̄u, 0, 0, 0, M2
Z).

x D0[10−9 GeV−4] D1[10−9 GeV−4]
PV 10−1 −0.67882897158103 + i 6.0180488033754 1.7886414145138 − i 1.2549864424823
GE −0.67882877418780 + i 6.0180477715020 1.7886420559893 − i 1.2549896774206
PV 10−3 −0.83672359694266 + i 6.2756930854749 1.9379452063976 − i 1.3078118992970
GE −0.83672359694268 + i 6.2756930854749 1.9379452063946 − i 1.3078118992992
PV 10−5 −0.83844622485772 + i 6.2784151968393 1.9395624008169 − i 1.3083604510334
GE −0.83844622485773 + i 6.2784151968392 1.9395624003839 − i 1.3083604516556
PV 10−7 −0.83846346674121 + i 6.2784424334401 1.9395786154611 − i 1.3083659591802
GE −0.83846346674123 + i 6.2784424334401 1.9395785857818 − i 1.3083659392409

x D11[10−9 GeV−4] D111[10−9 GeV−4]
PV 10−1 −1.1897035560343 + i 0.24556726948834 0.78386334534494 + i 0.015037069443873
GE −1.1897015303789 + i 0.24555744219672 0.78386954016210 + i 0.015008250147071
PV 10−3 −1.2896489514112 + i 0.24411794128315 0.85127803054027 + i 0.030174795680439
GE −1.2896489629378 + i 0.24411794473416 0.85127066041158 + i 0.030177001227644
PV 10−5 −1.2906894073746 + i 0.24417445247670 3.6185733047156 + i 5.5143276069563
GE −1.2907326083248 + i 0.24408881850424 0.85200224111245 + i 0.030350914400978
PV 10−7 −1.3307540613183 − i 0.18321620694255 −256227.63578209 − i 2736466.9255631
GE −1.2907434539101 + i 0.24408852556218 0.85200956315901 + i 0.030352656048116

Table 4: Numerical results corresponding to Fig. 25.
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Full diagram: Subdiagram:

0

MZ
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0

m2
u

s

sµν̄

0

sµν̄u

sµν̄d

Relative deviations from ”best”

x
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1
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10−4

10−6
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Relative deviations from ”best”

x
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1
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improved by Gram/Cayley exp.

(etc.) Passarino–Veltman reduction
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D11

D1

D0

Absolute prediction

x

10−210−310−410−5

Kinematics:

mu = 0.066GeV

MZ = 91.1876GeV

s = 4×104 GeV2

sµν̄ = 64×102 GeV2

|Z|, |X| → 0 ⇔
sµν̄d → s and sµν̄u → sµν̄

Considered limit:

x ≡ sµν̄d/s− 1
≡ sµν̄u/sµν̄ − 1 → 0

Fig. 26: An example for 4-point integrals with both|Z| and|X| small (x → 0). Details as in Fig. 25. The precise kinematical

assignment isD...(m
2
u, sµν̄ , 0, s, sµν̄u, sµν̄d, 0, m2

u, 0, M2
Z).

x D0[10−8 GeV−4] D1[10−8 GeV−4]
PV 10−2 8.3606217876308 − i 3.0637590178519 −3.6746526331008 + i 0.92370985809148
GCE 8.3605751148559 − i 3.0637472109275 −3.6746146470383 + i 0.92369999581248
PV 10−3 8.4400974376543 − i 3.0949777817064 −3.7124176130452 + i 0.93444204630892
GCE 8.4400974331251 − i 3.0949777805604 −3.7124176082911 + i 0.93444204697694
PV 10−4 8.4481162422241 − i 3.0981290348801 −3.7162301181594 + i 0.93552679201780
GCE 8.4481162422054 − i 3.0981290348524 −3.7162304755308 + i 0.93552678170043
PV 10−5 8.4489188416187 − i 3.0984444568680 −3.7165517842462 + i 0.93563927582254
GCE 8.4489188413614 − i 3.0984444566400 −3.7166121290025 + i 0.93563537143079

x D11[10−8 GeV−4] D111[10−8 GeV−4]
PV 10−2 2.2302468112479 − i 0.53202142768691 −1.5782872266397 + i 0.38602980478054
GCE 2.2297642816234 − i 0.53189620367287 −1.5778873843217 + i 0.38592377802513
PV 10−3 2.2539023067993 − i 0.53805321575089 −1.5955732338585 + i 0.38916806038788
GCE 2.2539023467387 − i 0.53805185525506 −1.5951976445129 + i 0.39030849156415
PV 10−4 2.2578016118662 − i 0.53856637974433 19.161260651686 + i 1.6687070921546
GCE 2.2562925399069 − i 0.53866164959083 −1.5969069247380 + i 0.39074113712771
PV 10−5 1.8810483898149 − i 0.93548431089474 492069.51092499 + i 67693.244541619
GCE 2.2565317562670 − i 0.53872268382964 −1.5970779937221 + i 0.39078443860164

Table 5: Numerical results corresponding to Fig. 26.
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reduction seems to be better. Table 4 provides explicit numbers for the considered tensor coefficients at
somex values. These numbers could serve as a benchmark also for other methods.

We recall that the expansion for small|Z| is limited to the case wherẽX0j andZ̃kl are not too small
for at least one set of indicesj, k, l. If all X̃0j are small, then|X| is small, too. Such a case is considered
in the next subsection. The case in which allZ̃kl are small is elaborated in Section 5.6 of Ref. [193].

10.4.2 A case with small Gram and modified Cayley determinants

Figure 26 defines the second benchmark point for a 4-point function in which both determinants|Z| and
|X| become small. Here we compare results of PV reduction with results of a simultaneous expansion in
|Z| and|X| as described in Section 5.5 of Ref. [193]. In the upper half ofthe figure a pentagon diagram
is shown that contains a box subdiagram with the considered kinematical configuration. The structural
diagram again illustrates the kinematical situation as in the previous case and the explicit values of the
masses and invariants are given in the figure. The u-quark mass mu is kept only as regulator of the
mass singularity, i.e. it is only kept non-zero in the logarithm lnmu, but set to zero otherwise. The
two determinants|Z| and|X| vanish if the two conditionssµν̄d = s andsµν̄u = sµν̄ are fulfilled. We
explore the neighbourhood of this exceptional configuration on the specific line parametrized by the
dimensionless variablex = sµν̄d/s − 1 = sµν̄u/sµν̄ − 1, while keeping the internal masses and the
squares of the external momenta fixed.

The plot on the l.h.s. again illustrates the instabilities for smallx in the PV reduction that become
more serious for higher tensor ranks, while the results of the expansion method behave smoothly. The
relative difference between the PV and the corresponding “best” prediction is shown on the r.h.s., re-
vealing the expected increase forx → 0. For a sufficiently highx the difference becomes zero, because
PV reduction is more accurate than the expansion. In the overlap region both methods should be pre-
cise within a relative accuracy of about10−6 for the considered coefficients. Table 5 provides explicit
numbers for the considered tensor coefficients at somex values.

The expansion method fails if either all̃Zki or all X̃ij are small. Possible treatments of these
exceptional cases are also described in Ref. [193].

Acknowledgements

This work is supported in part by the European Community’s Marie-Curie Research Training Network
HEPTOOLS under contract MRTN-CT-2006-035505.

11. SINGULARITIES IN ONE-LOOP AMPLITUDES FROM THE POINT OF V IEW OF RE-
DUCTION METHODS 21

11.1 Introduction

Obtaining radiative corrections requires the evaluation of loop Feynman integrals. The simplest, but also
the most important, loop integrals are one-loop Feynman integrals. Considerable progress has recently
been made in developing various approaches for calculatingone-loop integrals. Today, at least in prin-
ciple, it is possible to calculate any of them to arbitrary precision no matter how many external legs
the corresponding Feynman diagram has. Unfortunately, despite huge development, for a practitioner,
the calculation of amplitudes up to one-loop contributionsis still a difficult task. With the increasing
complexity of the process under consideration, the number of Feynman diagrams whose contributions
have to be obtained rises very quickly, as does the complexity of the corresponding one-loop Feynman
integrals which have to be calculated. Therefore, we are forced to automatize our calculations. Use of
available automatized algorithms helps tremendously, butthe moment when calculations of physically
relevant processes will demand for practical use unacceptable amounts of computer time and memory

21Contributed by: G. Duplaňcić
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is not far away. To surpass this problem it is necessary to look for new approaches for calculating one-
loop amplitudes, but also to implement algorithms in a more ”computer friendly” way, which means less
computer algebra and more numerics. Unfortunately, numerically oriented codes increase our chances
to face numerical instabilities. This problem is usually connected with the presence of singularities in
the functions under consideration. It is known that loop Feynamn integrals have rich singularity struc-
tures. For that reason, it is important to summarize all thatis known about the problem as well as to
share experience from previously performed calculations of amplitudes. Since reduction to the set of
basic scalar Feynman integrals is at the heart of most methods for calculating Feynman integrals, here
we discuss singularities from that point of view. Despite different approaches which can be taken, the
final decomposition of the given Feynman integral, in terms of predefined set of basic integrals, should
be unique. Therefore, any approach taken to discuss the singularity structure of the final decomposition
is equally valid. Here the reduction method based on Refs. [141,143,201,202] is used.

11.2 Definitions and reduction method

In order to obtain one-loop amplitudes, integrals of the following type are required,

IN
µ1···µP

(D; {νi}) ≡ (µ2)2−D/2

∫
dDl

(2π)D

lµ1 · · · lµP∏N
i=1

[
(l + ri)2 −m2

i + iǫ
]νi

, (108)

IN
0 (D; {νi}) ≡ (µ2)2−D/2

∫
dDl

(2π)D

1
∏N

i=1

[
(l + ri)2 −m2

i + iǫ
]νi

. (109)

The integralIN
µ1···µP

(IN
0 ) is a rankP tensor (scalar) one-loopN -point Feynman integral inD-dimensi-

onal space-time, whereνi are powers of propagators andl+ ri (mi) is the momentum (mass) of particle
propagating along the corresponding internal line. The momentuml is the loop momentum and theri
are linear combinations of external momenta. The scaleµ is the usual dimensional regularization scale
and the quantityiǫ (ǫ > 0) represents an infinitesimal imaginary part which ensures causality and, after
the integration, determines the correct sign of the imaginary part of the logarithms and dilogarithms. It is
customary to choose the loop momentum in such a way that one ofthe momentari vanishes. However,
for general considerations, it is convenient to keep the symmetry of the integral with respect to the indices
1, · · · , N .

It can be shown that every tensor one-loop integral can be expressed as a linear combination of
scalar one-loop integrals by the following equation,

IN
µ1···µP

(D; {νi}) =
∑

k,j1,··· ,jN≥0

2k+Σji=P

{
[g]k[r1]

j1 · · · [rN ]jN

}
µ1···µP

(4πµ2)P−k

(−2)k

[
N∏

i=1

Γ(νi + ji)

Γ(νi)

]

× IN
0 (D + 2(P − k); {νi + ji}), (110)

where{[g]k[r1]j1 · · · [rN ]jN }µ1···µP
represents a symmetric (with respect toµ1 · · ·µP ) combination of

tensors, each term of which is composed ofk metric tensors andji momentari. Therefore, the problem
of calculating tensor integrals has been reduced to the calculation of the general scalar integral, which is
the most convenient to evaluate from the following representation,

IN
0 (D; {νi}) =

i

(4π)2
(4πµ2)2−D/2

Γ
(∑N

i=1 νi −D/2
)

∏N
i=1 Γ(νi)

(−1)Σ
N
i=1νi

×
∫ 1

0

(
N∏

i=1

dyiy
νi−1
i

)
δ

(
N∑

i=1

yi − 1

)
−

N∑

i,j=1
i<j

yiyj (ri − rj)
2 +

N∑

i=1

yim
2
i − iǫ




D/2−ΣN
i=1νi

. (111)
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Direct evaluation of the general scalar integral represents a non-trivial problem. However, with the help
of the recursion relations, the problem can be simplified in the sense that the calculation of the original
scalar integral can be reduced to the calculation of a certain number of simpler basic integrals. All
relevant recursion relations for scalar integrals can be written in matrix notation as




0 1 1 · · · 1
1 R11 + 2iǫ R12 + 2iǫ · · · R1N + 2iǫ
1 R12 + 2iǫ R22 + 2iǫ · · · R2N + 2iǫ
...

...
...

.. .
...

1 R1N + 2iǫ R2N + 2iǫ · · · RNN + 2iǫ




·




(D − 1 −∑N
j=1 νj)I

N
0 (D; {νi})

ν1 I
N
0 (D; {νi + δi1})

ν2 I
N
0 (D; {νi + δi2})

...
νN IN

0 (D; {νi + δiN})




=

=




−(4πµ2)−1IN
0 (D − 2; {νi})

−(4πµ2)−1 IN
0 (D − 2; {νi − δi1})

−(4πµ2)−1 IN
0 (D − 2; {νi − δi2})

...
−(4πµ2)−1 IN

0 (D − 2; {νi − δiN})



, (112)

whereRij = (ri − rj)
2 −m2

i −m2
j . In the following we introduce the notationSN for the(N + 1) ×

(N + 1) matrix in Eq. (112). Making use of relations which follow from Eq.(112), each scalar integral
IN
0 (D; {νi}) can be represented as a linear combination of integralsIN

0 (D′; {1}) and integrals with the
number of propagators which is less thanN (it has be understood thatIN

0 (D; {· · · νl−1, 0, νl+1 · · · })
≡ IN−1

0 (D; {· · · νl−1, νl+1 · · · }) ). For the dimensionD′, one usually chooses4 + 2ε, whereε is
the infinitesimal parameter regulating the divergences. Bysuccessively applying the above mentioned
procedure to the remaining less-than-N -point integrals it is at the end possible to express the integral
IN
0 (D; {νi}) as a linear combination of integralsIk

0 (D′; {1}), k = 1, . . . , N . It is convenient to write
these basic integrals as

IN
0 (D′; {1}) =

i

(4π)2
(4πµ2)2−D′/2Γ

(
N −D′/2

)
(−1)N

×
∫ 1

0

N∏

i=1

dyiδ

(
N∑

i=1

yi − 1

)
−1

2

N∑

i,j=1

yi (Rij + 2iǫ) yj




D′/2−N

, (113)

where the properties of theδ function were used.

11.3 Singularities

The necessary conditions for Feynman integrals to have singularities are given by the Landau equations.
In the integral representations given by Eqs. (111) and (113), the singularity conditions [183] are given
by

N∑

i,j=1

yi (Rij + 2iǫ) yj = 0 (114)

and

either yi = 0 or

N∑

j=1

(Rij + 2iǫ) yj = 0 for eachi. (115)

Notice that condition (114) is automatically satisfied whenconditions (115) are. The singularity of the
given Feynman integral corresponding to allyi 6= 0 is called theleading singularityof the integral, while
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those corresponding to someyi = 0 are calledlower-order singularitiesof the integral. Lower-order
singularities are leading singularities of integrals where all propagators associated with vanishingyis
have been omitted. In the language of Feynman diagrams this translates as contraction to a point of all
lines associated withyi = 0.

Finding the general solution of the Landau equations is non-trivial task. Here we consider only real
singularities. Real singularities are those occurring forreal values of the invariantsRij on the physical
sheet. Notice that these real values of the invariants do notnecessarily correspond to a physically possible
kinematical configuration.

Due to presence of theiǫ, no singularity appears along the real contour of integration in the para-
metric space in Eqs. (111) and (113). It should be understoodthat singularities appear only in the limit
iǫ→ 0.

In the previous section, it was described how to express an arbitrary Feynman integral as a linear
combination of the basic scalar integrals. The question arises if all singularities of the starting integral
correspond to singularities of the basic scalar integrals or some of them correspond to singularities of
coefficients of the decomposition. To answer that question,it is enough to check ifiǫ appears in de-
nominators of the coefficients. That is, singularities appear only in the limit iǫ → 0 and if some of
the coefficients diverge independently of that limit, then the corresponding singularity is artificial in the
sense that it is not a singularity of the starting Feynman integral. Consequently, such a divergence should
cancel in sum of all terms in the decomposition.

The simplest way to see wheniǫ appears in denominators is to invert Eq. (112) by multiplying it
by inverse ofSN . The resulting equation is




(D − 1 −∑N
j=1 νj)I

N
0 (D; {νi})

ν1 I
N
0 (D; {νi + δi1})

...
νN IN

0 (D; {νi + δiN})


 = −(4πµ2)−1

Det[SN ]
× (116)




Det[RN ] − 2iǫDet[SN ] −S2 1
N · · · (−1)N+2SN+1 1

N

−S1 2
N S2 2

N · · · (−1)N+3SN+1 2
N

...
...

.. .
...

(−1)N+2S1 N+1
N (−1)N+3S2 N+1

N · · · (−1)2N+2SN+1 N+1
N







IN
0 (D − 2; {νi})

IN
0 (D − 2; {νi − δi1})

...
IN
0 (D − 2; {νi − δiN})


,

whereSi j
N is minor ofSN obtained by removingith row andjth column, andRN is anN × N matrix

with elements equal toRij . The matrixRN is sometimes called modified Cayley matrix and its deter-
minant the modified Cayley determinant. All minors appearing in Eq. (116) as well as Det[SN ] areiǫ
independent. In all that determinants the first row or columncan be simply used to remove completely
the iǫ dependance. Therefore, only the recursion relation following from the first row of Eq. (116) will
have aniǫ dependent coefficient. From the form of that relation it follows that real singularities can
appear in the coefficients of decomposition only if relations of that type are used during reduction to
increase dimension of integrals. In that case, a singularity can appear when Det[RN ] = 0. As expected,
the singularity is related to the same matrix which appears in Landau equations (114) and (115).

What happens if we calculate the integral exactly for kinematical variables and masses for which
Det[RN ] vanishes? In that case the limitiǫ → 0 should produce a divergence. But, from the beginning,
dimensional regularization was introduced exactly to avoid explicit appearance of divergences. Hence,
the limit iǫ → 0 can be applied and divergences appear in the form of powers of1/ε. It follows that the
term Det[RN ]−2iǫDet[SN ] vanishes and the first row from Eq. (116) can be used to reduce theN -point
integral to a linear combination of(N − 1)-point integrals.

To complete the discussion, it is necessary to comment on howreduction works for vanishing
Det[SN ]. Let us first express Det[SN ] in a better known form. By subtracting the last column from the
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second, third,. . . , andN th column, and then the last row from the second, third,. . . , andN th row,
Det[SN ] is given by

Det[SN ] = −Det[−2(ri − rN ) · (rj − rN )] , i, j = 1, . . . , N − 1. (117)

The determinant on the right hand side of Eq. (117) is known asthe Gram determinant. If Det[SN ], i.e.
the Gram determinant, vanishes, then the rows (columns) of the matrix in Eq. (112) should be linearly
dependent. That is, there are real constants−C, z1, . . . , zN , not all of them equal zero, which satisfy
the equation




0 1 1 · · · 1
1 R11 + 2iǫ R12 + 2iǫ · · · R1N + 2iǫ
1 R12 + 2iǫ R22 + 2iǫ · · · R2N + 2iǫ
...

...
...

. ..
...

1 R1N + 2iǫ R2N + 2iǫ · · · RNN + 2iǫ




·




−C
z1
z2
...
zN




=




0
0
0
...
0



. (118)

To see that the constants−C, z1, . . . , zN should be real, just remove the completeiǫ dependance from
the system in Eq. (118) by subtracting the equation from the first row multiplied by2iǫ from equations
in all other rows. After multiplying Eq. (112) by row

(
−C z1 z2 · · · zN

)
, the following relation

emerges,

C IN
0 (D − 2; {νi}) =

N∑

j=1

zj I
N
0 (D − 2; {νi − δij}). (119)

It is easy to see that by using above relation it is always possible to reduce relevantN -point scalar integral
to a linear combination ofN − 1-point scalar integrals. For details see [143].

From the considerations above, we can conclude that vanishing of the Gram determinant is not
related to the singularities of Feynman integrals. It is important to point out that the situation is not
so simple in the case of diagrams with more than one loop. There, Gram determinants are related to
so-calledsecond-type singularities.

11.4 Practice and problems

In practice we deal with 4-dimensional Minkowski space. An immediate consequence of this is that,
for all integrals withN > 5, Det[SN ] vanishes due to the linear dependence of the vectorsri and all
integrals withN > 5 can be reduced to the integrals withN ≤ 5. In view of what has been said above,
all one-loop integrals are expressible in terms of the integralsIk

0 (4+2ε; {1}) with nonvanishing Det[Sk]
and Det[Rk], wherek = 1, . . . , 5. In fact, for practical calculations, also the 5-point basic scalar integral
is reducible. That is because we are interested in calculations up toO(ε). Details can be found in the
literature [140,142,202].

For most practical calculations the starting Feynman integrals obtained from Feynman diagrams by
using Feynman rules are in4+2ε dimensions and withνi = 1. In the next step, tensor decomposition, Eq.
(110), will produce scalar integrals with higher dimensions and powers of propagators. By successively
using all recursion relations following from Eq. (116), except the one coming from the first row, in the
cases of nonvanishing Gram determinants and recursion relations following from Eqs. (118) and (119)
in the cases of vanishing Gram determinants, it is possible to express an arbitrary Feynman integral
as a linear combination of integralsIk

0 (2n + 2ε; {1}) with nonvanishing Det[Sk] and Det[Rk], where
k = 1, . . . , 5. The possible values for parametern depend on kinematics involved. If the kinematics
is such that during reduction no case appears where the constantC in Eqs. (118) and (119) vanishes,
the parametern is an integer greater than 1. Now, the recursion from the firstrow of Eq. (116) can be
successively used to lower all dimensions down to4 + 2ε. Since in the above procedure that relation
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was never used to increase dimension, from what has been saidin the previous section, it follows that
all singularities are in basic scalar integrals and divergences appearing in coefficients should cancel in
the sum. The cases with vanishingC appear regularly when dealing with diagrams containing collinear
external lines, i.e. for exceptional kinematics.

Assuming the situation described in the previous paragraph, many Gram determinants to different
powers will appear in denominators of the coefficients when an arbitrary Feynman integral is decomposed
into the basic integrals. The real problem in practice is when one has to calculate in a kinematical region
where some of those determinants are small. Since vanishingof the Gram determinant does not corre-
spond to a singularity, one faces cancellation of big numbers and consequently numerical instabilities.
In principle, if one is using methods where all Feynman integrals are expressed as linear combinations
of basic integrals, this problem is unavoidable no matter inwhich framework coefficients are calculated.
That is because the decomposition into the basic integrals is unique. However, there are some hints from
experience as to where one should look to soften this problem. The main guideline is to try to avoid
separate calculation of diagrams contributing to the process under consideration. Namely, powers of
determinants in denominators tend to be smaller if a group ofdiagrams (for example, a gauge invariant
group) is calculated together. Additionally, one has to useall symmetries of the basic integrals to reduce
the basic set as much as possible. Of course, at the end, to getmore precision, it is always necessary
to make an expansion around a point where the Gram determinant vanishes. However, if calculating
in the neighborhood of the point where both Gram and Cayley determinants vanish simultaneously, the
expansion is problematic because the decomposition is not analytic at that point. One can hope that such
regions will not give sizable contribution to calculated physical quantities.

11.5 Conclusion

Vanishing of various Gram and modified Cayley determinants will always produce numerical instabili-
ties if reduction methods are used to perform the calculation. The instabilities can be softened by using
various clever approaches but the question remains, will that work for all practical cases? One can also
doubt if reduction to basic integrals is the optimal approach to perform calculations which, due to their
complexity, become more and more numerically oriented. Maybe some kind of direct numerical inte-
gration of the Feynman integrals is more efficient. Surely this is a more natural approach for numerical
calculations.
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Part III

CROSS SECTIONS

12. TUNED COMPARISON OF QCD CORRECTIONS TO pp → WW+jet+X AT THE
LHC 22

12.1 Introduction

The complicated hadron collider environment of the LHC requires not only sufficiently precise predic-
tions for the expected signals, but also reliable rates for complicated background reactions, especially for
those that cannot be entirely measured from data. Among suchbackground processes, several involve
three, four, or even more particles in the final state, rendering the necessary next-to-leading-order (NLO)

22Contributed by: T. Binoth, J. Campbell, S. Dittmaier, R.K. Ellis, J.-P. Guillet, S. Kallweit, S. Karg, N. Kauer, G. San-
guinetti, P. Uwer, G. Zanderighi
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calculations in QCD technically challenging. At the previous Les Houches workshop this problem lead
to the creation of a list of calculations that are a priority for LHC analyses, the so called ”experimenters’
wishlist for NLO calculations” [6, 194]. The processpp → W+W−+jet+X made it to the top of this
list.

The process of WW+jet production is an important source for background to the production of a
Higgs boson that subsequently decays into a W-boson pair, where additional jet activity might arise from
the production [203]. WW+jet production delivers also potential background to new-physics searches,
such as the search for supersymmetric particles, because ofleptons and missing transverse momentum
from the W decays. Last, but not least, the process is interesting in its own right, since W-pair production
processes enable a direct precise analysis of the non-abelian gauge-boson self-interactions, and a large
fraction of W pairs will show up with additional jet activityat the LHC.

First results on the calculation of NLO QCD corrections to WW+jet production have been pre-
sented by two groups in Refs. [204, 205]. A third calculationis in progress [206]. In the following
the key features of these three independent calculations are described and results of an ongoing tuned
comparison are presented.

12.2 Descriptions of the various calculations

At leading order (LO), hadronic WW+jet production receivescontributions from the partonic processes
qq̄ → W+W−g, qg → W+W−q, andq̄g → W+W−q̄, whereq stands for up- or down-type quarks.
All three channels are related by crossing symmetry.

The virtual corrections modify the partonic processes thatare already present at LO. At NLO
these corrections are induced by self-energy, vertex, box (4-point), and pentagon (5-point) corrections,
the latter being the most complicated loop diagrams. Apart from an efficient handling of the huge amount
of algebra, the most subtle point certainly is the numerically stable evaluation of the numerous tensor
loop integrals, in particular in the vicinity of exceptional phase-space points. The three calculations
described below employ completely different loop methods.Some of them are already briefly reviewed
in Ref. [194], where more details on problems in multi-leg loop calculations and brief descriptions of
proposed solutions can be found.

The real corrections are induced by the large variety of processes that result from crossing any
pair of QCD partons in0 → W+W−qq̄gg and0 → W+W−qq̄q′q̄′ into the initial state. Here the
main complication in the evaluation is connected to an efficient phase-space integration with a proper
separation of soft and collinear singularities. For the separation of singularities the three calculations
all employ the subtraction method [207] using the dipole subtraction formalism of Catani and Seymour
[165].

The calculation of DKU [204]

This calculation is actually based on two completely independent evaluations of the virtual and real cor-
rections. The W bosons are taken to be on shell, but the results on cross sections presented in Ref. [204]
do not depend on the details of the W decays.

Both evaluations of loop diagrams start with an amplitude generation byFeynArts, using the two
independent versions 1.0 [208] and 3.2 [209]. One of the calculations essentially follows the same
strategy already applied to the related processes oftt̄H [210] andtt̄+jet [211] production. Here the
amplitudes are further processed with in-houseMathematicaroutines, which automatically create an
output inFortran. The IR (soft and collinear) singularities are treated in dimensional regularization and
analytically separated from the finite remainder as described in Refs. [199, 210]. The pentagon tensor
integrals are directly reduced to box integrals following Ref. [195]. Box and lower-point integrals are
reduced̀a la Passarino–Veltman [157] to scalar integrals, which areeither calculated analytically or using
the results of Refs. [138, 212, 213]. The second loop calculation is based onFormCalc5.2 [4], which
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automatically producesFortrancode. The reduction of tensor to scalar integrals is done with the help of
theLoopToolslibrary [4], which also employs the method of Ref. [195] for the 5-point tensor integrals,
Passarino–Veltman [157] reduction for the lower-point tensors, and theFF package [214, 215] for the
evaluation of regular scalar integrals. The dimensionallyregularized soft or collinear singular 3- and
4-point integrals had to be added to this library.

One calculation of the real corrections employs analyticalresults for helicity amplitudes obtained
in a spinor formalism. The phase-space integration is performed by a multi-channel Monte Carlo integra-
tor [216] with weight optimization [217] written inC++. The results for cross sections with two resolved
hard jets have been checked against results obtained withWhizard1.50 [218] andSherpa1.0.8 [219].
Details on this part of the calculation can be found in Ref. [220]. The second evaluation of the real
corrections is based on scattering amplitudes calculated with Madgraph[148] generated code. The code
has been modified to allow for a non-diagonal quark mixing matrix and the extraction of the required
colour and spin structure. The latter enter the evaluation of the dipoles in the Catani–Seymour subtrac-
tion method. The evaluation of the individual dipoles was performed using aC++ library developed
during the calculation of the NLO corrections fortt̄+jet [211]. For the phase-space integration a simple
mapping has been used where the phase space is generated froma sequential splitting.

The calculation of CEZ [205]

The method of choice for calculation of the virtual corrections of Ref. [205] is similar to the techniques
adopted by the other groups and is based on the semi-numerical method of Ref. [221] augmented with
a mechanism to handle exceptional configurations [222]. This method has already been used for the
NLO calculation of Higgs plus dijet production via gluon-gluon fusion [223]. Tree-level matrix ele-
ments for real radiation have been checked against the results of Madgraph[224]. Soft and collinear
singularities are handled using the dipole subtraction scheme [165]. As for the other authors, CEZ have
performed several checks to test the reliability of their code. These include checks of Ward identities of
the amplitudes containing external gluons.

The calculation of Ref. [205] is however different from the other two in that the decay of the
W bosons is included from the outset. Rather than summing over the polarizations of a W boson of
momentumk with

∑
εµεν =

[
− gµν +

kµkν

M2
W

]
, (120)

the authors of this paper project out the combination of polarizations which occurs in the physical decay
of the W boson,W−(k) → e−(l1) + ν̄(l2),

∑
εµεν ∼ 1

2l1.l2
Tr[6l1γµ6l2γνγL], γL = (1 − γ5)/2. (121)

The inclusion of the decay is well-motivated from a physicalpoint of view, because it allows phenomeno-
logical analyses which include cuts on the decay leptons.

For the purposes of the comparison of virtual matrix elements for a fixed phase-space point, the
results including the decays can be used to extract the result for the amplitude squared summed over the
polarization of the vector boson, as would be obtained usingEq. (120). This is achieved by performing
6×6=36 evaluations of the amplitude squared [225] in which each lepton is emitted along three orthog-
onal axes (in both positive and negative directions) in the corresponding vector-boson center-of-mass
frame. The results of this comparison, with input parameters tuned for the comparison, will be given
below.
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The calculation of BGKKS [206]

This calculation is also done in two independent ways. The graph generation is based onQGRAF [155]
and was cross checked by having two independent codes. All diagrams neglect the quarks of the 3rd
generation.

Up to now the LO part and the virtual corrections are evaluated. By using the spinor helicity
formalism, projectors on the different helicity amplitudes are defined. In this way all Lorentz indices can
be saturated such that the complexity of the one-loop 5-point tensor reduction is such that at most rank-1
5-point integrals appear. For each helicity amplitude an algebraic representation in terms of certain basis
functions is obtained by using the reduction methods developed in Refs. [142, 175]. The whole algebra
is done in an automated way by usingFORM [156] andMAPLE. In both approaches the IR divergent
integrals are isolated by using 6-dimensional IR finite box functions such that IR poles are in 3-point
functions only. One implementation uses the function set defined in Appendix C of Ref. [175], and uses
the implementation of theFortran 90codegolem90. The other computation uses standard scalar 2-
and 3-point functions as a basis. The complete algebraic reduction to d=6 scalar box and d=n scalar 2-
and 3-point functions is largely equivalent to a standard Passarino–Veltman reduction. Only the 5-point
functions are treated differently [175]. Tractable analytical expressions of the coefficients to the two sets
of basis functions are obtained for each independent helicity amplitude.

Discrete symmetries (Bose,C,P) are used to check and relatehelicity amplitudes with each other.
The coefficients are exported to aFortrancode and used to evaluate the loop correction of the process.

For the treatment ofγ5 the ’t Hooft–Veltman scheme is applied. Theγ-algebra and the loop
momenta are split into4- and(D−4)-dimensional parts. Whereas theγ5 anti-commutes with theD = 4
matrices, it commutes with the gamma matrices defined ind = D − 4. As is well known the QCD
corrections of an axial vector current are different from the vector part and a finite renormalisation has
to be performed. The following gauge boson vertex which includes a finite counterterm for the axial part
(see e.g. Refs. [226–228]) is used,

V µ
V qq̄ ∼ gv γ

µ + Z5 ga γ
µγ5 with Z5 = 1 − CF

αs

π
, (122)

to reinforce the correct chiral structure of the amplitudes. Note that the ’t Hooft–Veltman scheme treats
the observed particles in 4 dimensions but the soft/collinear gluons inD dimensions. This guarantees
that for the IR subtractions the same Catani–Seymour dipoleterms as for conventional dimensional
regularisation can be used [229].

12.3 Tuned comparison of results

The following results essentially employ the setup of Ref. [204]. The CTEQ6 [18, 230] set of parton
distribution functions (PDFs) is used throughout, i.e. CTEQ6L1 PDFs with a 1-loop runningαs are
taken in LO and CTEQ6M PDFs with a 2-loop runningαs in NLO. Bottom quarks in the initial or final
states are not included, because the bottom PDF is suppressed w.r.t. to the others. Quark mixing between
the first two generations is introduced via a Cabibbo angleθC = 0.227. In the strong coupling constant
the number of active flavours isNF = 5, and the respective QCD parameters areΛLO

5 = 165 MeV and
ΛMS

5 = 226 MeV, leading toαLO
s (MW ) = 0.13241687663294 andαNLO

s (MW ) = 0.12026290039064.
The top-quark loop in the gluon self-energy is subtracted atzero momentum. The running ofαs is,
thus, generated solely by the contributions of the light quark and gluon loops. In all results shown in
the following, the renormalization and factorization scales are set toMW . The top-quark mass ismt =
174.3 GeV, the masses of all other quarks are neglected. The weak boson masses areMW = 80.425 GeV,
MZ = 91.1876 GeV, andMH = 150 GeV. The weak mixing angle is set to its on-shell value, i.e. fixed
by c2w = 1 − s2w = M2

W /M2
Z , and the electromagnetic coupling constantα is derived from Fermi’s

constantGµ = 1.16637 · 10−5 GeV−2 according toα =
√

2GµM
2
W s2w/π.
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|MLO|2/e4/g2
s [GeV−2]

uū→W+W−g 0.9963809154477200 · 10−3

dd̄→W+W−g 0.3676289952184384 · 10−5

ug →W+W−u 0.1544340549124799 · 10−3

dg →W+W−d 0.1537758419168101 · 10−5

gū→W+W−ū 0.7491333451663728 · 10−4

gd̄→W+W−d̄ 0.2776156068243590 · 10−4

Table 6: Results for squared LO matrix elements at the phase-space point (123).

We apply the jet algorithm of Ref. [231] withR = 1 for the definition of the tagged hard jet and
restrict the transverse momentum of the hardest jet bypT,jet > 100 GeV.

12.4 Results for a single phase-space point

For the comparison the following set of four-momenta is chosen,

pµ
1 = (7000, 0, 0, 7000), pµ

2 = (7000, 0, 0,−7000), (123)

pµ
3 = (6921.316234371218, 3840.577592920205, 0, 5757.439881432096),

pµ
4 = (772.3825553565997,−67.12960601170266,−279.4421082776151,−712.3990141151700),

pµ
5 = (6306.301210272182,−3773.447986908503, 279.4421082776151,−5045.040867316925),

where the momentum assignment is fora(p1)b(p2) →W+(p3)W
−(p4)c(p3).

Table 6 shows some results for the (spin- and colour-summed)squared LO matrix elements, as
obtained withMadgraph[148]. The results of all three groups agree with these numbers within about 13
digits.

Because of the different treatment of the number of active flavours in the calculations of DKU and
CEZ and in order to be independent of the subtraction scheme to cancel IR divergences, we found it useful
to compare virtual results prior to any subtraction. TheO(αs) contribution to the virtual, renormalized
squared amplitude is given by the interference between tree-level and one-loop virtual amplitude, which
we denote schematically as

2Re{M∗
V ·MLO} = e4g2

sf(µren)

(
c−2

1

ǫ2
+ c−1

1

ǫ
+ c0

)
, (124)

with23 f(µren) = Γ(1+ ǫ)(4πµ2
ren/M

2
W )ǫ and the number of space–time dimensionsD = 4−2ǫ. In the

following we split the coefficients of the double and single pole and for the constant part,c−2, c−1, and
c0, into bosonic contributions (“bos”) without closed fermion loops and the remaining fermionic parts.
The fermionic corrections are further split into contributions from the first two generations (“ferm1+2”)
and from the third generation.

Table 7 shows the results for the bosonic parts of the coefficientsc−2, c−1, andc0 (c−2 does not
receive fermion-loop corrections). The results onc0 obtained by the different groups typically agree
within 7−11 digits; the ones onc−2 andc−1 agree much better, because they are much easier to calculate.
The results for the fermionic contributions of the first two generations are given in Table 8. Compared to
the bosonic corrections these contributions are suppressed by three orders of magnitude. Counting this
suppression factor, which results from cancellations, as significant digits, the finite parts agree within
6−9 digits. The agreement is somewhat better in the coefficientsof the single pole, which entirely stems
from the counterterm of the fermion-loop part of the gluon self-energy. The remaining contributions

23Note that this factor differs from the overall factorcΓ extracted when quoting results for one phase-space point inthe CEZ
paper.
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c−2[GeV−2] cbos
−1 [GeV−2] cbos

0 [GeV−2]

uū→W+W−g
DKU −1.080699305508758 · 10−4 7.842861905263072 · 10−4 −3.382910915425372 · 10−3

CEZ −1.080699305505865 · 10−4 7.842861905276719 · 10−4 −3.382910915464027 · 10−3

BGKKS −1.080699305508814 · 10−4 7.842861905263293 · 10−4 −3.382910915616242 · 10−3

dd̄→W+W−g
DKU −3.987394716797222 · 10−7 2.893736116870099 · 10−6 −1.252531649334637 · 10−5

CEZ −3.987394716665197 · 10−7 2.893736115389983 · 10−6 −1.252531614999332 · 10−5

BGKKS −3.987394716798342 · 10−7 2.893736117550454 · 10−6 −1.252531647620369 · 10−5

ug →W+W−u
DKU −1.675029833503229 · 10−5 1.236268430131559 · 10−4 −5.417120947927877 · 10−4

CEZ −1.675029833501256 · 10−5 1.236268430124113 · 10−4 −5.417120948004078 · 10−4

BGKKS −1.675029833503285 · 10−5 1.236268430131930 · 10−4 −5.417120948184518 · 10−4

dg →W+W−d
DKU −1.667890693078443 · 10−7 1.231000679615805 · 10−6 −5.402644808236175 · 10−6

CEZ −1.667890693268847 · 10−7 1.230999331981130 · 10−6 −5.402644353170802 · 10−6

BGKKS −1.667890693077475 · 10−7 1.230999333576065 · 10−6 −5.402644211736123 · 10−6

gū→W+W−ū
DKU −8.125284951799448 · 10−6 7.047108864062224 · 10−5 −3.525581727244482 · 10−4

CEZ −8.125284951286924 · 10−6 7.047108863931619 · 10−5 −3.525581728065669 · 10−4

BGKKS −8.125284951799859 · 10−6 7.047108864102780 · 10−5 −3.525581727287365 · 10−4

gd̄→W+W−d̄
DKU −3.011087314520321 · 10−6 2.611534269956032 · 10−5 −1.326197552139531 · 10−4

CEZ −3.011087314528406 · 10−6 2.611534269870494 · 10−5 −1.326197549152728 · 10−4

BGKKS −3.011087314520429 · 10−6 2.611534269951226 · 10−5 −1.326197552106838 · 10−4

Table 7: Results for the bosonic virtual corrections at the phase-space point (123) withc−2, c−1 andc0 are defined in Eq. (124).
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cferm1+2
−1 [GeV−2] cferm1+2

0 [GeV−2]

uū→W+W−g
DKU 2.542821895320379 · 10−5 4.372323372044527 · 10−7

CEZ 2.542821895311753 · 10−5 4.372790378087550 · 10−7

BGKKS 2.542821895314862 · 10−5 4.372324288356448 · 10−7

dd̄→W+W−g
DKU 9.382105211529244 · 10−8 2.383985481697933 · 10−8

CEZ 9.382105220158816 · 10−8 2.381655056763332 · 10−8

BGKKS 9.382105215996126 · 10−8 2.383986138730693 · 10−8

ug →W+W−u
DKU 3.941246664484964 · 10−6 2.261655163318730 · 10−7

CEZ 3.941246667066658 · 10−6 2.261900862449825 · 10−7

BGKKS 3.941246667066566 · 10−6 2.261651778836927 · 10−7

dg →W+W−d
DKU 3.924449049876280 · 10−8 −3.340508442179341 · 10−8

CEZ 3.924448807787651 · 10−8 −3.341842650545260 · 10−8

BGKKS 3.924448689594072 · 10−8 −3.340505335889721 · 10−8

gū→W+W−ū
DKU 1.911831753319591 · 10−6 −3.332688444715011 · 10−7

CEZ 1.911831753400357 · 10−6 −3.332770821153847 · 10−7

BGKKS 1.911831753364673 · 10−6 −3.332688443882355 · 10−7

gd̄→W+W−d̄
DKU 7.084911328500216 · 10−7 −3.420298601940541 · 10−7

CEZ 7.084911328417316 · 10−7 −3.419939732016338 · 10−7

BGKKS 7.084911328283340 · 10−7 −3.420298578631734 · 10−7

Table 8: Results for the fermionic contributions of the firsttwo quark generations toc−1 andc0 at the phase-space point (123).

c−2[GeV−2] c−1[GeV−2] c0[GeV−2]

uū→W+W−g
DKU −1.080699305508778 · 10−4 8.160714642177893 · 10−4 −3.382201173786996 · 10−3

dd̄→W+W−g
DKU −3.987394716797186 · 10−7 3.011012432041691 · 10−6 −1.248828433702770 · 10−5

ug →W+W−u
DKU −1.675029833503229 · 10−5 1.285534013444099 · 10−4 −5.413834847221341 · 10−4

dg →W+W−d
DKU −1.667890693078551 · 10−7 1.280056291844283 · 10−6 −5.452219162448072 · 10−6

gū→W+W−ū
DKU −8.125284951799523 · 10−6 7.286087833227389 · 10−5 −3.528788476602400 · 10−4

gd̄→W+W−d̄
DKU −3.011087314520238 · 10−6 2.700095661561590 · 10−5 −1.331943241722592 · 10−4

Table 9: Results for the full bosonic+fermionic contributions toc−2, c−1 andc0 at the phase-space point (123).
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pp→W+W−+jet+X σLO[fb] σNLO[fb] σvirt+I[fb]
DKU 10371.7(12) 14677.6(98) −881.5(42)
CEZ 10372.26(97)

BGKKS 10371.7(11)

Table 10: Results for contributions to the integrated pp cross sections at the LHC in LO and NLO.

from closed loops of the third quark generation are not compared yet. For future reference we show the
full corrections including all bosonic and fermionic contributions in Table 9.

12.5 Results for integrated cross sections

A tuned comparison of integrated cross sections is still in progress. Table 10 illustrates the agreement
in the LO cross section obtained by the different groups and provides the DKU result in NLO for future
comparisons. The subcontributionσvirt+I corresponds to the IR-finite sum of the virtual corrections and
the contribution of theI operator that is extracted from the real corrections with the dipole subtraction
formalism [165].

12.6 Conclusions

We have reported on an ongoing tuned comparison of NLO QCD calculations to WW+jet production at
the LHC. For a fixed phase-space point, the virtual corrections obtained by three different groups using
different calculational techniques agree within 6–9 digits. The comparison of full NLO cross sections,
which involve the non-trivial integration of the virtual corrections over the phase space, is still in progress.

The agreement found so far gives us confidence in the conclusions drawn for physical quantities,
which were reported in Refs. [204,205].

Acknowledgements

P.U. is supported as Heisenberg Fellow of the Deutsche Forschungsgemeinschaft DFG. This work is
supported in part by the European Community’s Marie-Curie Research Training Network HEPTOOLS
under contract MRTN-CT-2006-035505 and by the DFG Sonderforschungsbereich/Transregio 9 “Com-
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13. FROM THE HIGH ENERGY LIMIT OF MASSIVE QCD AMPLITUDES TO TH E FULL
MASS DEPENDENCE24

13.1 Introduction

It is clear that the physics program of the LHC poses new challenges to the theory. In fact, the description
of hadronic collisions involves several quantities, both non-perturbative and perturbative, the determina-
tion of which is a highly non-trivial task. As far as the perturbative part is concerned, we are still a
long way of having the partonic cross sections predicted at asuitable level of accuracy. Whereas most
processes will have to be known to next-to-leading order, there are some for which the experimental pre-
cision grants a study going one order higher in the strong coupling constant. Particularly interesting here
is the top quark pair production cross section. With statistics going into millions of events, a systematics
dominated error of under 10% is expected already in the first phase of the LHC. Despite years of efforts,

24Contributed by: M. Czakon
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the appropriate complete NNLO prediction is not yet available. The bottleneck, as in most such cases is
the evaluation of the two-loop virtual corrections.

Recently, the high energy limit of the amplitudes in the quark annihilation and gluon fusion chan-
nels has been derived [232, 233] by a mixture of direct evaluation of Feynman graphs and an approach
based on factorization properties of QCD (see A. Mitov’s andS. Moch’s contribution). The knowledge
gained can already be used for the description of highpT events and as a test of a future complete pre-
diction. Clearly due to the behavior of the particle fluxes, what is needed is a calculation covering the
whole range of variation of the kinematical parameters. It is interesting that one can actually use the high
energy limit to deal with this problem. Unfortunately, it isnot enough to have the whole amplitude, but
it is rather necessary to know all of the master integrals. Inthe following, I describe the steps that lead
to the complete result.

13.2 The high energy limit

By the high energy limit, I understand the limit where all theinvariants are much larger than the mass. A
direct approach to the evaluation of the amplitude under this assumption has been devised in [234,235].
As a first step, one uses the Laporta algorithm to reduce all ofthe integrals occurring to a small set of
masters. In the case at hand, the number of integrals is 145 and 422 for the quark annihilation and gluon
fusion channels respectively.

Subsequently, Mellin-Barnes representations are constructed for all the integrals [236, 237]. This
can be done by an automatic package, here by one written by theAuthor and G. Chachamis25. After
analytic continuation in the dimension of space-time performed with the MB package [239], the integrals
have the following general form

I = (m2)n−2ǫ

∫ i∞

−i∞
dz

(
−m

2

s

)z

f

(
t

s
, z

)
, (125)

where thef function contains, amongst others, a product ofΓ, or possiblyψ functions, which have poles
in z. The desired expansion is obtained by closing the contour and taking residues. As a result, one
obtains integrals which have lower dimension and a simpler structure. These still require evaluation.
Due to the fact, that there is a relation between the massive and the massless cases, the result must have a
similar structure. In particular, it has to be given by harmonic polylogarithms, and therefore it should be
possible to resum the integrals by further closing contoursand evaluating the resulting series. This can
again be achieved automatically with the help of the XSummerpackage [240].

What remains at the end are integrals, which are pure numbers, but do not have a structure sug-
gesting a solution in terms of harmonic series. The same argument as before shows, however, that this
must be the case. Instead of working out specific methods for particular integrals, it turned out to be
possible to evaluate them to very high precision and subsequently use the PSLQ algorithm to reconstruct
the solution in terms of Riemann zeta values.

It has to be noted, that the procedure sketched above works for the majority of cases, but some
remain at the end. For these, it is usually necessary to change the basis of integrals, in order to obtain
expressions of suitable structure and/or size for evaluation. At present this program has been completed
for the quark annihilation channel, and thus all the color structures given in [232] have been computed
directly with agreement with the factorization approach. The gluon fusion channel is still under way.

13.3 Power corrections

As explained in the introduction, the high energy limit by itself is not enough for practical applications.
To go one step further, it is possible to compute power corrections in the mass. These will then cover

25There is a public package available [238] that constructs representations for planar graphs. In the present case, also non-
planar graphs occur, however.
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Fig. 27: Bare leading color amplitude for top quark pair production in the quark annihilation channel expanded in the mass.

The more divergent terms at threshold (left of the plots) correspond to higher orders of expansion. The left panel corresponds

to 90 degree scattering, whereas the right to forward scattering. The variables are defined in the text.

most of the range, apart from the threshold region and the small angle region, where the series is not
convergent any more.

The main idea is as follows. The derivative of any Feynman integral with respect to any kinemat-
ical variable is again a Feynman integral with possibly higher powers of denominators or numerators.
These can, however, be reduced to the same master integrals.This means that one can construct a par-
tially triangular system of differential equations in the mass [241,242], which can subsequently be solved
in the form of a power series.

In Fig. 27, I show the result of expansion for the leading color term. The kinematic variablex is

x = − t

s
, t = (p3 − p1)

2 −m2
t , (126)

and its variation within the range[1/2(1 − β), 1/2(1 + β)], whereβ =
√

1 − 4m2
t /s is the velocity,

corresponds to angular variation between the forward and backward scattering.

The series appears to be asymptotic at the boundaries. Unfortunately, the behavior is worse for the
subleading color terms, as a consequence of the Coulomb singularity among others.

13.4 Numerical evaluation

Using the same system of differential equations one can obtain a full numerical solution to the problem.
The only requirement is to have the boundary conditions to suitable accuracy. These are provided by
the series expansions of the previous section. It is crucialto perform the numerical integration along a
contour in the complex plane, since there are spurious singularities along the real axis. Here, I chose
an ellipse, because of the improved control on the integration error that one gets from the software used
(ODEPACK).

Fig. 28 shows the solution in the range, where the expansion of the previous section starts to di-
verge. The achievable precision, if double precision arithmetic is used, is about 10 digits for most points,
with evaluation times of the order of a second. This is going to be substantially slower, when subleading
color terms will be added. However, the method is fast and precise enough to be sufficient for practi-
cal applications. In particular it is possible to constructgrids of solutions, which will be subsequently
interpolated when implemented as part of a Monte Carlo program.

It is clear that the method is suitable for problems, which have a relatively small number of scales,
and seems to be perfect for2 → 2 QCD processes at the two-loop level. The main drawback is thesize
of the expressions, and the difficulties connected to the derivation of the boundary conditions.
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Fig. 28: Full mass dependence of the bare leading color amplitude in the quark annihilation channel.

13.5 Conclusions

I have described an approach for the evaluation of massive QCD amplitudes starting from the high energy
limit and its application to the NNLO corrections to the top quark pair production cross section. Needless
to say, the same procedure can be applied to other problems ofinterest. At present the Author, together
with G. Chachamis and D. Eiras, is working on the correctionsto gauge boson pair production.
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14. MUCH CAN BE SAID ABOUT MASSIVE AMPLITUDES JUST FROM KNOWI NG
THEIR MASSLESS LIMIT 26

14.1 The high-energy limit

For the precise evaluation of collider observables the knowledge of the pure virtual correction to the
corresponding Born process is required. This is true at any order (NLO, NNLO, etc). In presence of
heavy flavors, and especially at higher orders, the problem of their evaluation becomes acute.

There are very important applications awaiting such results. An example of central importance
is top production at LHC which is one of the few eagerly awaited precisionobservables at this collider.
One of the peculiar features of top production at LHC, and in contrast to the situation at the Tevatron, is
that no specific kinematical region dominates the cross-section. This is due to the shape of the luminosity
function for LHC kinematics.

Direct calculation of the amplitudes is certainly a very demanding task and it seems that one can
hope that numerical results in some, hopefully easy to handle form, will become available soon (see
the contribution by M. Czakon for progress in this direction). Here we consider an alternative approach
which explores the special properties of the gauge theory amplitudes in the high-energy limit and easily
provides (partial) results for the heavy flavor amplitudes even at higher perturbative orders.

26Contributed by: A. Mitov, S. Moch

75



In the following we start by introducing the concept ofhigh-energy limitwith the help of simple
and physically motivated arguments. By high-energy limit one means a kinematical situation where
the corresponding invariants are much larger than the masses of the heavy particles of interest. In the
following we will consider the case of a single massive fermion with massm in presence of a typical
large kinematical invariantQ. Specific examples are detailed in section 14.3. If the quantity of interest
(like total or differential cross-section, amplitude, etc.) is regular in the limitm/Q → 0 then the high-
energy limit is quite trivial: it is anm-independent function of the kinematical invariants whichcoincides
with the one evaluated in the massless limit. Therefore it can be computed by setting the massm to zero
from the very beginning.

Such a situation is, however, relatively rare. In most quantities of interest, like the differential
ones, the limitm/Q → 0 is singular. The obvious manifestation of that singularityin the results is the
presence of terms of the type∼ lnn(m/Q). When such contributions appear (and in fact this is the
typical situation) the high-energy limit is defined as the full result with all power corrections in the mass
neglected, i.e. it contains all logarithms (not multipliedby powers of the mass) as well as the so-called
“constant” or mass-independent terms. Clearly, in such cases the high-energy limit is different from the
massless limit.

Before we detail the relation between these two limits, we would first like to clarify the origin
and meaning of the logarithmic terms mentioned above. Theseterms are known as (quasi-) collinear
logs since they originate from emissions of collinear radiation. To be precise, the role of the mass is to
regulate small angle emissions that would otherwise diverge in a massless theory; see Ref. [243] for a
detailed exposition. In this regard, a parton’s mass gets dual significance, since one can take one of the
following two viewpoints:

• small or large, the mass is nevertheless non-zero, therefore the result is always (collinearly)
finite;

• the small mass is just a formal regulator for collinear singularities much like dimensional regu-
larization in the purely massless case.

In this write-up we take the unifying viewpoint that both approaches are useful and do not have
to be considered as alternatives to each other. One can thinkof the mass as a regulator which is helpful
in deriving certain properties of the theory but it can also be thought of as an approximation to the full
massive result which is surprisingly good in many physical applications.

The prominent role these logarithmic terms play in physicalapplications has been acknowledged
long ago, and has been formalized in the so-called Perturbative Fragmentation Function approach [244]
now known through two-loops [245,246]; for a recent review see [247]. The idea behind this formalism
is the fact that up to power corrections in the mass, a differential with respect to some kinematical
parameterz cross-section for the production of a massive partonh, can be written as:

dσh

dz
(z,Q,m) =

∑

a

dσ̂a

dz
(z,Q) ⊗Da→h(z,m) + O(m) . (127)

The functionDa→h(z,m) does not depend on the hard scaleQ and is thus a process independent
object that can be computed to any fixed order. It has the important property that it contains all the mass
dependence within the approximation indicated in Eq. (127). On the other side the partonic cross-section
dσ̂a for the production of any partona is intrinsically massless, i.e. it is obtained from a calculation where
m = 0 is set from the very beginning. Of course, collinear singularities are still present in a massless
calculation but they are regulated dimensionally, i.e. they appear as poles inǫ, whered = 4 − 2ǫ:

dσa

dz
(z,Q, ǫ) =

∑

b

dσ̂b

dz
(z,Q) ⊗ Γba(z, ǫ) . (128)

The explicit expression for the collinear countertermΓ contains arbitrariness; the only condition on it
is that it contains all poles inǫ. It has become a standard practice in recent years to work in the MS
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scheme whereΓ contains only poles. The choice of a subtraction scheme is ofcourse also implicit in the
definition of the functionD in Eq. (127).

From Eqs. (127), (128) it is quite clear that one can obtain a massive cross-section in the small-
mass (or high-energy) limit by performing a purely masslesscalculation. The calculational simplifi-
cations following from this can be enormous, especially at higher orders. The usefulness of such an
approach has been appreciated in the past in many applications related to heavy quark production (typ-
ically b andc) at special kinematics like largePT hadroproduction ande+e− annihilation at theZ-pole
(see [248] for a review). In such kinematical configurationsthe neglected power corrections can be as
low as a few percent effect and are often totally negligible.

A second virtue of Eq. (127), and one that cannot be matched inconventional perturbation theory,
is that it allows resummation of large collinear logsln(Q/m) to all perturbative orders. This feature
is due to the fact that the functionD satisfies the DGLAP evolution equation, or in other words one
achieves exponentiation of the (remnants of) soft and collinear singularities.

As we will demonstrate in the next section, all these features of massive cross-sections in the
small-mass limit can be translated to massive amplitudes ingauge theories where similar properties can
be uncovered. Moreover, one can exploit these properties inmuch the same way; this is illustrated by the
physical applications we consider in section 14.3.

14.2 Factorization in massive amplitudes

As was indicated above, in the following we will be concernedwith the factorization properties of mas-
sive QCD amplitudes in the high-energy limit. Since one of our main objectives is to relate the small-
mass limit of an amplitude with its massless limit, we start our discussion with a brief review of the
well-known factorization properties of massless amplitudes [249,250].

The scattering amplitudeMp

|Mp〉 ≡ Mp

(
{ki}, {mi}, {ci},

Q2

µ2
, αs(µ

2), ǫ

)
, (129)

for a general2 → n scattering processes of on-shell partonspi

p : p1 + p2 → p3 + · · · + pn+2 . (130)

with a set of fixed external momenta{ki}, masses{mi} and color quantum numbers{ci}, can be written

in the massless casemi = 0 as a product of three functionsJ (m=0)
p , S(m=0)

p andH[p],

|Mp〉(m=0) = J (m=0)
p

(
Q2

µ2
, αs(µ

2), ǫ

)
S(m=0)

p

(
{ki},

Q2

µ2
, αs(µ

2), ǫ

)
|Hp〉 , (131)

The decomposition Eq. (131) can be understood with simple physical arguments. The jet func-
tion J (m=0)

p contains all collinearly sensitive contributions, is color-diagonal and depends only on the

external partons. On the other side the soft functionS(m=0)
p contains all soft radiation interferences and

is therefore process specific. Finally, the short-distancedynamics of the hard scattering is described by
the (infrared finite) hard functionHp. To leading order this function is just proportional to the Born
amplitude. More details about the above expressions can be found in the review [251].

As was explained in [250], the decomposition Eq. (131) contains arbitrariness related to subleading
soft as well as finite contributions, which can be removed by fixing a prescription. A convenient and
natural choice is to identify the jet function with the massless form factor for the flavor corresponding to
any particular leg, i.e.:

J (m=0)
p =

∏

i∈ {all legs}

J (m=0)
[i] =

∏

i∈ {all legs}

(
F (m=0)

[i]

) 1
2
, (132)
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wherei = q, g for quarks and gluons.J (m=0)
[i] is the individual jet function of each external parton. The

needed massless jet factors are known through three-loops and the soft functions through two-loops for
any2 → n scattering process [252].

We are now ready to consider the massive case. Based on our discussion in the previous sections
in the small-mass limit one should expect a decomposition ofmassive amplitudes similar to the one in
Eq. (131). Let us be more specific: we know that in the massive case collinear logs do appear but we
also know that they should be absorbed in a corresponding jetfunction. On the other side, up to power
corrections, the soft and hard functions in the massive caseshould be the same as in the massless case
since, by construction, they are not sensitive to collinearemissions. With the exception of contributions
related to heavy quark loops (to be discussed below) in the presence of a hard scaleQ we write for the
massive amplitudes (130):

|Mp〉(m) = J (m)
p

(
Q2

µ2
, {mi}, αs(µ

2), ǫ

)
S(m=0)

p

(
{ki},

Q2

µ2
, αs(µ

2), ǫ

)
|Hp〉 + O(m) . (133)

It is very easy to find out what the jet function in the massive case should be. Working in the
prescription chosen for the massless case, one can apply theamplitude decomposition to the form factor
itself; the latter has no nontrivial soft or hard functions.Therefore, in the massive case the jet function
must be nothing but the massive form factor evaluated in the small-mass limit.

Combining Eqs. (131), (133) one gets the following very suggestive relation [253]:

M(m)
p =

∏

i∈ {all legs}

(
Z

(m|0)
[i]

) 1
2 × M(m=0)

p + O(m, . . . ) , (134)

where,

Z
(m|0)
[i]

(
m2

µ2
, αs, ǫ

)
= F (m)

[i]

(
Q2

µ2
,
m2

µ2
, αs, ǫ

)(
F (m=0)

[i]

(
Q2

µ2
, αs, ǫ

))−1

+ . . . , (135)

is a universal, process independent factor. It is sensitiveto the definition of the massm as well as the
coupling constant (see [253] for details). The process-independence in Eq. (135) is manifest because
Z

(m|0)
[i]

is only a function of the process-independent ratio of scalesµ2/m2. The process-dependent scale
Q cancels completely between the massive and the massless form factors.

The last statement, however, requires one important clarification. From the explicit results for the
massive and massless form factors one can easily see that starting from two loops the ratio indicated
above contains alsoQ-dependent logarithmic terms originating from diagrams with the heavy parton in
loops. It is these terms that we have indicated with dots in Eq. (135). Luckily, these terms are easy to
recognize and to separate since in the color decomposition of the amplitudes they are proportional to the
number of heavy flavorsnh. For that reason in the definition ofZ-factor given originally in Ref. [253]
contributions proportional to the number of heavy flavors have been excluded, as indicated by the dots
in Eq. (134). A first step in the understanding of the loop contributions and their incorporation into
the factorization approach was made in Ref. [254] in the context of Bhabha scattering. We discuss this
process as well as other applications in the next section.

Comparing the results of this section with the ones in the previous section, we can clearly see the
similarities offered by QCD factorization between small-mass limits of amplitudes and cross-sections.
In both cases the small-mass results are proportional to thecorresponding massless results. The pro-
portionality factors are process independent and universal. The proportionality is in the sense of usual
multiplication for amplitudes and convolution for cross-sections, as usual. Moreover, it was explained in
Ref. [253] the so-calledZ-factor in Eq. (135) seems in fact to equal the pure virtual contributions to the
perturbative fragmentation functionD in Eq. (127).
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14.3 Applications

The results in the previous section have been cross-checkedat the amplitude level with the general-mass
predictions for the structure of theǫ-poles andln(m) terms of any one-loop amplitude [243]. Complete
agreement was found. We have also checked that for the process qq̄ → hh̄ the prediction based on
Eq. (134) completely agrees with the results from the one-loop calculation of Ref. [255]. We want to
stress that we have compared not only the singular terms but also all terms that are finite in the limits
ǫ → 0 andm → 0. The agreement applies to all color structures of the amplitude as well as for both its
real and imaginary parts.

In subsequent work [232, 233] a prediction for the small-mass limit of all two-loop heavy quark
production squared amplitudes at hadron colliders has beenmade, while the terms proportional tonh

were obtained from a direct calculation. We will not go into details here (they can be found for example
in the recent review [251]) but will only summarize the main features of the result: several of the color
structures were calculated both directly as well as predicted and we observed full agreement between the
two approaches. Therefore, this is a first two-loop check forthe factorization approach and represents a
direct confirmation of its validity.

Another obvious application where the small-mass limit plays important role is Bhabha scattering.
The knowledge of the two-loop QED massive amplitudes in the small-mass limit there is needed for
achieving the intended precision of the luminosity measurement; see for example [256]. Complete results
for the photonic corrections to large-angle Bhabha scattering were first obtained by Penin [257] and later
confirmed in Ref. [254] in the approach discussed in the previous section. Therefore, this is yet another
example of its usefulness and power.

14.4 Conclusions

We have presented a newly developed relation between massive and massless QCD amplitudes. We
have emphasized its relevance for physical applications and its ability to seamlessly produce results for
processes that cannot be calculated currently by direct means.

The relation was introduced based on the idea for massless limit of a massive amplitude and was
given in parallel to the much better known relation between massive and massless differential cross-
sections.

The new relation between massive and massless amplitudes represents the proper generalization
of the naive textbook replacement relation1/ǫ → ln(m) + . . . to all perturbative orders and for any
process. Moreover, with the obvious identification of the color factors, the relation is applicable to any
SU(N) gauge theory, QCD being a prominent example. QCD and QED applications like heavy quark
production at hadron colliders at two loops and two-loop corrections to Bhabha scattering were briefly
discussed.

15. NNLO PREDICTIONS FOR HADRONIC EVENT SHAPES IN e+e− ANNIHILATIONS 27

15.1 Introduction

For more than a decade experiments at LEP (CERN) and SLC (SLAC) gathered a wealth of high pre-
cision high energy hadronic data from electron-positron annihilation at a range of centre-of-mass ener-
gies [258–274]. This data provides one of the cleanest ways of probing our quantitative understanding of
QCD. This is particularly so because the strong interactions occur only in the final state and are not en-
tangled with the parton density functions associated with beams of hadrons. As the understanding of the
strong interaction, and the capability of making more precise theoretical predictions, develops, more and
more stringent comparisons of theory and experiment are possible, leading to improved measurements
of fundamental quantities such as the strong coupling constant [248,275].

27Contributed by: G. Dissertori, A. Gehrmann–De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, H. Stenzel
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In addition to measuring multi-jet production rates, more specific information about the topol-
ogy of the events can be extracted. To this end, many variables have been introduced which charac-
terise the hadronic structure of an event. With the precision data from LEP and SLC, experimental
distributions for such event shape variables have been extensively studied and have been compared
with theoretical calculations based on next-to-leading order (NLO) parton-level event generator pro-
grams [207,276–281], improved by resumming kinematically-dominant leading and next-to-leading log-
arithms (NLO+NLL) [282–287] and by the inclusion of non-perturbative models of power-suppressed
hadronisation effects [288–291].

Comparing the different sources of error in the extraction of αs from hadronic data, one finds that
the purely experimental error is negligible compared to thetheoretical uncertainty. There are two sources
of theoretical uncertainty: the theoretical description of the parton-to-hadron transition (hadronisation
uncertainty) and the uncertainty stemming from the truncation of the perturbative series at a certain
order, as estimated by scale variations (perturbative or scale uncertainty). Although the precise size
of the hadronisation uncertainty is debatable and perhaps often underestimated, it is conventional to
consider the scale uncertainty as the dominant source of theoretical error on the precise determination
of αs from three-jet observables. This scale uncertainty can be lowered only by including perturbative
QCD corrections beyond NLO.

We report here on the computation of NNLO corrections to event shape distributions, and discuss
the impact of these corrections on the extraction ofαs from LEP data.

15.2 Event shape variables

In order to characterise hadronic final states in electron-positron annihilation, a variety of event shape
variables have been proposed in the literature, for a reviewsee e.g. [287, 292]. These variables can be
categorised into different classes, according to the minimal number of final-state particles required for
them to be non-vanishing: In the following we shall only consider three particle final states which are
thus closely related to three-jet final states.

Among those shape variables, six variables were studied in great detail: the thrustT [293, 294],
the normalised heavy jet massρ [295], the wide and total jet broadeningsBW andBT [296], theC-
parameter [297, 298] and the transition from three-jet to two-jet final states in the Durham jet algorithm
Y3 [299–303].

The perturbative expansion for the distribution of a generic observabley up to NNLO ate+e−

centre-of-mass energy
√
s, for a renormalisation scaleµ2, is given by

1

σhad

dσ
dy

(s, µ2, y) =

(
αs(µ

2)

2π

)
dĀ
dy

+

(
αs(µ

2)

2π

)2(dB̄
dy

+
dĀ
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s

)

+
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+
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(
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s
+ β1 log

µ2

s

))
+ O(α4

s) . (136)

The dimensionless perturbative coefficientsĀ, B̄ andC̄ depend only on the event shape variabley. They
are computed by a fixed-order parton-level calculation, which includes final states with three partons at
LO, up to four partons at NLO and up to five partons at NNLO. LO and NLO corrections to event shapes
have been available already for a long time [207,276–281].

The calculation of the NNLO corrections is carried out usinga newly developed parton-level event
generator programmeEERAD3 which contains the relevant matrix elements with up to five external
partons [129, 150, 304–311]. Besides explicit infrared divergences from the loop integrals, the four-
parton and five-parton contributions yield infrared divergent contributions if one or two of the final state
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partons become collinear or soft. In order to extract these infrared divergences and combine them with the
virtual corrections, the antenna subtraction method [312–314] was extended to NNLO level [315–318]
and implemented fore+e− → 3 jets and related event-shape variables [319]. The analytical cancellation
of all infrared divergences serves as a very strong check on the implementation.EERAD3 yields the
perturbativeA, B andC coefficients28 as histograms for all infrared-safe event-shape variablesrelated
to three-particle final states at leading order. As a cross check, theA andB coefficients have also
been obtained from an independent integration [279–281] ofthe NLO matrix elements [207], showing
excellent agreement.

For small values of the event shape variabley, the fixed-order expansion, eq. (136), fails to con-
verge, because the fixed-order coefficients are enhanced by powers of ln(1/y). In order to obtain reliable
predictions in the region ofy ≪ 1 it is necessary to resum entire sets of logarithmic terms at all orders in
αs. A detailed description of the predictions at next-to-leading-logarithmic approximation (NLLA) can
be found in Ref. [321].

15.3 Generic features of the NNLO corrections

The precise size and shape of the NNLO corrections depend on the observable in question. Common to
all observables is the divergent behaviour of the fixed-order prediction in the two-jet limit, where soft-
gluon effects at all orders become important, and where resummation is needed. For several event shape
variables (especiallyT andC) the full kinematical range is not yet covered for three partons, but attained
only in the multi-jet limit. In this case, the fixed-order description is also not applicable since it is limited
to a fixed multiplicity (five partons at NNLO). Consequently,the fixed-order description is expected to
be reliable in a restricted interval bounded by the two-jet limit on one side and the multi-jet limit on the
other side.

In this intermediate region, we observe that inclusion of NNLO corrections (evaluated at theZ-
boson mass, and for a fixed value of the strong coupling constant) typically increases the previously
available NLO prediction. The magnitude of this increase differs considerably between different observ-
ables [320, 322], it is substantial forT (18%),BT (17%) andC (15%), moderate forρ andBW (both
10%) and small forY3 (6%). For all shape variables, we observe that the renormalisation scale uncer-
tainty of the NNLO prediction is reduced by a factor of two or more compared to the NLO prediction.
Inclusion of the NNLO corrections also modifies the shape of the event shape distributions. We observe
that the NNLO prediction describes the shape of the measuredevent shape distributions over a wider
kinematical range than the NLO prediction, both towards thetwo-jet and the multi-jet limit. To illus-
trate the impact of the NNLO corrections, we compare the fixed-order predictions forY3 to LEP2-data
obtained by the ALPEH experiment in Figure 29, which illustrates especially the improvement when
approaching the two-jet region, corresponding to large−ln(Y3).

15.4 Determination of the strong coupling constant

Event shape data from LEP and LEP2 were used in the past for a precise determination of the strong
coupling constantαs. These studies were based on the previously available NLO results, improved by
NLLA resummation; the resulting error onαs was completely dominated by the renormalisation scale
uncertainty inherent to the NLO calculation. Using the newly computed NNLO corrections to event
shape variables, we performed a new extraction ofαs from data on the standard set of six event shape
variables, measured by theALEPH collaboration [259] at centre-of-mass energies of 91.2, 133, 161,
172, 183, 189, 200 and 206GeV. The event-shape distributions were obtained using the reconstructed
momenta and energies of charged and neutral particles. The measurements have been corrected for
detector effects, ie., the final distributions correspond to a so-called particle (or hadron) level (stable
hadrons and leptons after hadronisation).

28A, B andC differ from Ā, B̄ andC̄ in their normalisation toσ0 instead ofσhad [320].

81



 

0.1

0.2

0.3

Q = 206 GeV

Y
3 

1/
σ ha

d d
σ/

d 
Y

3

Q = 172 GeV

 

0.1

0.2

0.3

Q = 200 GeV Q = 161 GeV

 

0.1

0.2

0.3

Q = 189 GeV

 2 4 6 8 10

Q = 133 GeV

-ln(Y3)

0

0.1

0.2

0.3

0 2 4 6 8 10

Q = 183 GeV

-ln(Y3)

αs (MZ) = 0.1189

ALEPH data

NNLO

NLO

LO

Fig. 29:Perturbative fixed-order predictions for theY3-distribution.

The coupling constantαs is determined from a fit of the perturbative QCD predictions to measured
event-shape distributions. The procedure adopted here follows closely the one described in Ref. [259].
Event-shape distributions are fitted in a central region of the three-jet production, where a good pertur-
bative description is available. The fit range is placed inside the region where hadronisation and detector
corrections are below 25% and the signal-to-background ratio at LEP2 is above one. At the higher LEP2
energies the good perturbative description extends further into the two-jet region, while in the four-jet
region the background becomes large. Thus the fit range is selected as a result of an iterative procedure
balancing theoretical, experimental and statistical uncertainties.

Here we concentrate on fits of NNLO predictions [323] and compare them to pure NLO and
matched NLO+NLLA predictions as used in the analysis of Ref.[259]. Results from individual event
shapes are displayed in Figure 30. The combination of all NNLO determinations from all shape variables
yields

αs(M
2
Z) = 0.1240 ± 0.0008 (stat) ± 0.0010 (exp) ± 0.0011 (had) ± 0.0029 (theo), (137)

which is indicated by the error band on Figure 30. We observe aclear improvement in the fit quality
when going to NNLO accuracy. Compared to NLO the value ofαs is lowered by about 10%, but still
higher than for NLO+NLLA [259], which shows the obvious needfor a matching of NNLO+NLLA
for a fully reliable result. The scatter among theαs-values extracted from different shape variables is
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Fig. 30: The measurements of the strong coupling constantαs for the six event shapes, at
√
s = MZ, when using

QCD predictions at different approximations in perturbation theory.

lowered considerably, and the theoretical uncertainty is decreased by a factor 2 (1.3) compared to NLO
(NLO+NLLA).

These observations visibly illustrate the improvements gained from the inclusion of the NNLO
corrections, and highlight the need for further studies on the matching of NNLO+NLLA, and on the
derivation of NNLLA resummation terms.
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Part IV

PARTON SHOWERS

16. DEVELOPMENTS IN LEADING ORDER PARTON SHOWERS 29

At the Les Houches workshop, there was lively discussion of parton showers as represented in Monte
Carlo event generators. One of the main current issues in this field is the problem of matrix-element

29Contributed by: D.E. Soper, P.Z. Skands
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/ parton-shower matching, and the workshop saw several reports on ways of (re-)formulating parton
showers that could make this problem easier to deal with, a trend one might denote with a fancy word
as “designer showers”. In this section, we review the part ofthat discussion that relates to how a leading
order parton shower can be organized. Despite the apparent differences, all the new approaches can be
discussed at a common footing if we adopt a little bit of notation (adapted from [324]).

A typical parton shower algorithm for hadron-hadron collisions works with states with two ini-
tial state partons,a andb, and some numberm of final state partons that we can label with integers
1, 2, . . . ,m. The momenta of these partons can then be specified by giving{p}m = {pa, pb, p1, . . . , pm}.
Each parton also carries a flavorf ∈ {g, u, ū, d, d̄, . . . }, so that the momenta and flavors can be speci-
fied with {p, f}m. Typically, we also keep track of color connections (the labels of one or two partons
to which partoni is connected in the leading-color limit). We may therefore denote the complete set of
m+ 2 partons by{p, f, c}m, wherec denotes the color connections.

We can now consider the states
∣∣{p, f, c}m

)
to form a basis for a vector space in the sense of

statistical mechanics. After some amount of shower evolution starting from a basis state
∣∣{p, f, c}2

)

with two final state partons, one reaches a state
∣∣ρ
)

that is a linear combination of basis states, so that(
{p, f, c}m

∣∣ρ
)

represents the probability, in the shower model, for the state
∣∣ρ
)

to consist ofm + 2
partons with momenta, flavors, and colors{p, f, c}m.

As the state develops, partons split. The evolution of the state is tracked with a shower “time”
t which can be interpreted as (the logarithm of) a typical timefor a quantum process such as a parton
splitting. In most of the current algorithms, the shower time is the logarithm of the virtuality or transverse
momentum in a splitting. (In HERWIG, the shower time represents the energy of the mother parton times
the square of the splitting angle. In order to cast HERWIG into the form presented here, one also needs
a cut on virtuality such that splittings with too small virtuality are not allowed. In other parton shower
algorithms, there is also a smallest virtuality allowed, but that can be obtained by simply stopping the
shower evolution at some point.)

The evolution starts with the hard process and works forwardin physical time for final state evo-
lution and backwards in physical time for the evolution of the initial state. Thus we take the shower time
for a splitting{p, f, c}m → {p̂, f̂ , ĉ}m+1 to bet = t({p̂, f̂ , ĉ}m+1) where, for instance ifi andj are the
daughter partons andQ represents the virtuality scale for the hard process that starts the shower,

t({p̂, f̂ , ĉ}m+1) = log

(
Q2

(p̂i + p̂j)2

)
. (138)

It can, and should, be debated whether there is a preferred choice for the shower evolution variable and,
if so, what it is.

Using this notation, we can represent what a typical parton shower Monte Carlo does. This repre-
sentation is an approximation to what real computer codes do. We assume that each stage of evolution
is independent of what happened at previous stages, depending instead only on the shower timet and
the partonic state at that stage. This is not the case if, for instance, we do not exactly conserve four-
momentum at each stage and then adjust the parton four-momenta at the end.

If we start with a particular basis state
∣∣{p, f, c}m

)
at shower timet0, then at a later timet′ we get

a state related to
∣∣{p, f, c}m

)
by an evolution operatorU(t′, t0). In the notation of conventional parton

showers, based on collinear DGLAP splitting kernels, the form of the evolution operator would be

U(t′, t0)
∣∣{p, f, c}m

)
= ∆(t′, t0; {p, f, c}m)

∣∣{p, f, c}m

)

+
∑

i,j,k

∫ t′

t0

dt1 ∆(t1, t0; {p, f, c}m)

∫ zmax(t1)

zmin(t1)
dz

∫
dφ

2π

αs

2π
Pi→jk(z) U(t′, t1)

∣∣{p̂, f̂ , ĉ}m+1

)
,

(139)

wheredt1 = dQ2/Q2 is the differential of the evolution variable,z is an energy-momentum sharing
fraction,P (z) are the DGLAP splitting kernels, and we include an integral over angle that is usually uni-
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formly distributed. Once the algorithm picks which parton splits, the flavors, and the splitting variables
t, z, φ, the new state{p̂, f̂ , ĉ}m+1 is known. Reformulating Eq. (139) in the notation outlined above, the
second term changes appearance slightly,

U(t′, t0)
∣∣{p, f, c}m

)
= ∆(t′, t0; {p, f, c}m)

∣∣{p, f, c}m

)

+

∫ t′

t0

dt1 ∆(t1, t0; {p, f, c}m)

×
∫ [

d{p̂, f̂ , ĉ}m+1

]

(m+ 1)!

(
{p̂, f̂ , ĉ}m+1

∣∣HI(t1)
∣∣{p, f, c}m

)
U(t′, t1)

∣∣{p̂, f̂ , ĉ}m+1

)
.

(140)

In either notation, the second term represents that at a shower timet1 > t0, the first splitting occurs.
This splitting time is determined on a probabilistic basis,sot1 is integrated over. The probability to get
a particular state{p̂, f̂ , ĉ}m+1 is given by

(
{p̂, f̂ , ĉ}m+1

∣∣HI(t1)
∣∣{p, f, c}m

)
, (141)

whereHI is the splitting operator, analogous to the interaction hamiltonian in quantum mechanics. There
is an integration over the possible outcomes{p̂, f̂ , ĉ}m+1. The requirement that the splitting at shower
time t1 be the first aftert0 means that we must include the probability that there is no earlier splitting.
This “no-branching” probability is given by a function (theSudakov form factor)

∆(t1, t0; {p, f, c}m) . (142)

In a lowest order shower, this function is fixed so that the probability not to split in shower time interval
dt1 is 1 minus the probability to split,

∆(t1, t0;{p, f, c}m) =

exp

(
−
∫ t1

t0

dτ
1

(m+ 1)!

∫ [
d{p̂, f̂ , ĉ}m+1

] (
{p̂, f̂ , ĉ}m+1

∣∣HI(τ)
∣∣{p, f, c}m

))
.

(143)

The last ingredient in line two of Eq. (140) is the evolution operatorU(t′, t1). This says that further
splittings can happen, in the same way, once the first splitting has occurred. It can also happen that there
is nosplitting generated between shower timest0 andt1. This is represented in the first term of Eq. (140).

Evidently, the main content of a parton shower resides in thegeneratorHI(t) of the evolution.
This has two main parts: a splitting function and a momentum mapping.

Consider first the splitting functions, functions of the daughter parton momenta that give the prob-
ability to split. If a parton splits into two nearly collinear partons, then the splitting function must match
the probability given by Feynman graphs in the collinear limit. For the moment, we discuss a spin
averaged, leading color shower. Then the splitting function matches the result from Feynman graphs
averaged over the mother parton spin and summed over the daughter spins in the approximation of ne-
glecting contributions that are suppressed by1/N2

c , whereNc is the number of colors. When the emitted
parton is a soft gluon, the splitting function should match the probability given by Feynman graphs in
the limit pm+1 → 0. Away from the soft and collinear limits, however, one can choose what functional
form to use and one can debate the merits of different choices.

This can be illustrated by the case of VINCIA [325], which represents a new development and is
discussed in more detail later in this section. In a leading order shower in the leading color limit, the
fundamental object that emits gluons is a color dipole, thatis, two partons, sayl andk, that are color-
connected (i.e., adjoining on a color string). The basic idea here goes back to the Lund dipole [326],
implemented in ARIADNE [327]. (We shall henceforth refer to such showers asdipole-antennashowers,
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in order to disambiguate them from what we shall callpartitioned-dipoleshowers below.) The relevant
Feynman graphs in the amplitude are those in which the gluonm+1 is emitted from partonl and those in
which it is emitted from partonk. In the squared amplitude, one has a contributionl-l, corresponding to
the square of the graph for emission froml, a similar contributionk-k, and two interference contributions
l-k andk-l. The approximation of keeping only the leading color contribution restricts us to the case that
l andk are color-connected. In dipole-antenna showers, each dipole is treated as a unit, an antenna that
radiates gluons, and the splitting functions can be chosen such as to match the perturbative result in all
the relevant limits, i.e. gluonm+ 1 collinear tol, collinear tok, or soft. There are two main differences
between VINCIA and ARIADNE (and also a recent SHERPA implementation [328]). The first is that an
explicit possibility to vary the shower ambiguities away from the singular regions is retained in VINCIA ,
and the second is that it combines the original dipole showerwith the antenna subtraction formalism of
Refs. [312,314,315] to match to fixed-order matrix elements.

Another new development is what we can call thepartitioned-dipoleshower [329, 330], which is
discussed in more detail later in this section. Here one partitions the splitting function into two parts. One
part contains the singularity corresponding to partonm+ 1 being collinear with partonl and part of the
soft singularity. The other part contains the singularity corresponding to partonm+1 being collinear with
partonk, along with the remaining part of the soft singularity. Awayfrom these singularities, one has a
choice. A sensible choice (as suggested in Ref. [331]) is to take the splitting functions to be precisely
those defined by the Catani-Seymour dipole subtraction scheme [165] that is widely used for next-to-
leading order perturbative calculations. This has the advantage that it should be fairly straightforward
to match these NLO calculations to a Catani-Seymour dipole shower. It has the disadvantage that the
splitting of the emission probability from a dipole antennainto two parts is perhaps a bit artificial. There
is more than one way to accomplish this splitting.

The second part of the generatorHI(t) of shower evolution is the specification of the momentum
mapping. In Eq. (140), there is a nominal integration over the momenta of all the partons after the
splitting. However the matrix element ofHI(t) contains delta functions that, for given starting momenta
{p}m, restrict the new momenta{p̂}m+1 to lie on a three dimensional surface. This surface could be
parametrized by splitting variablest, z, φ, as in Eq. (139). In the case of the timelike dipole-antenna
showers in ARIADNE, V INCIA , and SHERPA, the momenta of all of the partons not part of the dipole
remain the same before and after the parton emission. For thepartonsl andk that form the dipole, the
momentapl andpk plus three splitting variables are mapped reversibly to themomenta of three daughter
partons,̂pl, p̂k, andp̂m+1 after the splitting, with all of the parton momenta being on-shell. This mapping
is symmetric under label interchangel ↔ k. In the special case thatp̂m+1 is collinear withp̂l, we have
pl = p̂l + p̂m+1 andpk = p̂k. Similarly, if p̂m+1 is collinear with p̂k, we havepk = p̂k + p̂m+1

andpl = p̂l. In the soft limit, p̂m+1 = 0, we havepl = p̂l andpk = p̂k. Away from these limits,
the mapping is necessarily not so trivial, leading to a further non-singular ambiguity which VINCIA

attempts to explore. For the partioned-dipole shower, there is a similar but simpler mapping, this time
not symmetric underl ↔ k. The splitting function that includes the singularity forp̂m+1 collinear with
pl, comes with a momentum mapping for whichpl = p̂l + p̂m+1 andpk = p̂k whenp̂m+1 is collinear
with p̂l or soft. Away from these limits, the mapping takes some momentum from partonk in order
to keep momentum conserved and all partons on shell. The choice here is to use the same momentum
mapping as was defined by Catani and Seymour for the subtractions in next-to-leading order calculations.
In the case of splittings involving an initial state splitting (spacelike showers), the momentum mappings
are a little more complicated than sketched here. We should mention that it is also possible to take the
momentum needed to keep all partons on-shell fromall of the final state partons in what might be called
a democratic way [324].

We hope that this comparative discussion may be useful as a guide to the more detailed presen-
tations later in this section. We may also mention the published work [324] that was discussed at Les
Houches but is not separately presented in this document. The idea here is to extend the idea of a lead-
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ing order parton shower so that one doesnot average over spins or take just the leading color limit. In
this case, there is an evolution equation similar to Eq. (140) but with spin indices and a more detailed
specification of the color state. The solution of the evolution equation yields integrals that could, in
principle, be computed numerically. However, an algorithmthat is likely to be usefully convergent with
finite computer resources is still under development [332].

17. TIME-LIKE SHOWERS BASED ON DIPOLE-ANTENNA RADIATION FU NCTIONS 30

17.1 Introduction

In this report we take the next step in the development of the VINCIA shower towards a full-fledged parton
shower, embedded into the PYTHIA 8 generator [325, 333]. Previously, we included only the gluonic
time-like shower [325]. By including massless quarks we canstart making comparisons at LEP energies
and make quantitative studies for future linear colliders.As the VINCIA shower is a dipole-antenna
shower, we can make direct comparisons with the dipole-antenna functions used in ARIADNE [327].

We also make a phenomenological comparison with the PYTHIA 8 shower. For this purpose, we
choose the evolution variable, the hadronization boundaryand other parameters in VINCIA as close as
possible to the default PYTHIA 8 settings. In this emulation mode we compare a few representative
distributions, both infrared safe and infrared regulated observables, such as jet rates, thrust, and parton
multiplicities for hadronicZ decays at

√
s = mZ .

17.2 Dipole-antenna functions

The most general form for a leading-log antenna function formassless parton splitting,âb̂ → arb, can
be represented by a double Laurent series in the two branching invariants,

a(yar, yrb; s) =
1

s

∞∑

α,β=−1

Cα,β y
α
ar y

β
rb , (144)

where

s = sâb̂ = sarb and yij =
sij

s
≤ 1 (145)

are the invariant mass squared of the antenna and the scaled branching invariants, respectively. In prin-
ciple, eq. (144) could also be multiplied by an overall phasespace veto function, restricting the radiation
to specific “sectors” of phase space, but we shall here use so-called “global” antenna functions which
are summed together without such cuts. Note that we have herewritten the antenna function stripped of
color factors, to emphasize that this part of the discussionis not limited to the leading-color limit.

The coefficient of the most singular term,C−1,−1, controls the strength of the double (soft) sin-
gularity (the “double log” term) and the coefficientsC−1,j≥0 andCi≥0,−1 govern the single (collinear)
singularities (“single log” terms). These, in parton shower terminology collectively labeled “leading
log” terms, are universal, whereas the polynomial coefficientsCi≥0,j≥0 are arbitrary, corresponding to
beyond-leading-log ambiguities in the shower or, equivalently, different NLO subtraction terms in the
fixed-order expansion.

We take the Gehrmann-de-Ridder-Glover (“GGG”) antenna functions [315] as our starting point.
The corresponding coefficientsCα,β for the the five antennae that occur in massless QCD at LL are
collected in tab. 11. For reference, we also compare to the radiation functions [326, 334, 335] used
in the ARIADNE dipole shower [327], which are also the ones used in a recent study by the SHERPA

group [328]. Note that the single log terms have a slight ambiguity when gluons are involved, arising
from the arbitrary choice of how to decompose the radiation off the gluon into the two antennae it

30Contributed by: R. Frederix, W.T. Giele, D.A. Kosower, P.Z.Skands
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C−1,−1 C−1,0 C0,−1 C−1,1 C1,−1 C−1,2 C2,−1 C0,0 C1,0 C0,1

GGG
qq̄ → qgq̄ 2 -2 -2 1 1 0 0 0 0 0
qg → qgg 2 -2 -2 1 1 0 -1 5

2 -1 3
2

gg → ggg 2 -2 -2 1 1 -1 -1 8
3 -1 -1

qg → qq̄′q′ 0 0 1
2 0 -1 0 1 -1

2 1 0
gg → gq̄q 0 0 1

2 0 -1 0 1 -1 1 1
2

ARIADNE

qq̄ → qgq̄ 2 -2 -2 1 1 0 0 0 0 0
qg → qgg 2 -2 -3 1 3 0 -1 0 0 0
gg → ggg 2 -3 -3 3 3 -1 -1 0 0 0
qg → qq̄′q′ 0 0 1

2 0 -1 0 1 -1 1 1
2

gg → gq̄q 0 0 1
2 0 -1 0 1 -1 1 1

2

ARIADNE2 (re-parameterization of ARIADNE functionsà la GGG, for comparison)
qq̄ → qgq̄ 2 -2 -2 1 1 0 0 0 0 0
qg → qgg 2 -2 -2 1 1 0 -1 -1 0 0
gg → ggg 2 -2 -2 1 1 -1 -1 -4

3 -1 -1

Table 11: Laurent coefficients for massless LL QCD antennae (âb̂ → arb). The coefficients with at least one negative index

are universal (apart from a re-parameterization ambiguityfor gluons). For “GGG” (the defaults in VINCIA ), the finite terms

correspond to the specific matrix elements considered in [315]. In particular, theqq̄ antenna absorbs the tree-levelZ → qgq̄

matrix element [316] and thegg antennae absorb the tree-levelh0 → gg → ggg andh0 → gg → gq̄q matrix elements [318].

Theqg antennae are derived from a neutralino decay process [317].

participates in. Nominally, the ARIADNE single log coefficients therefore look different from the GGG
ones. However, a re-parameterization of the total gluon radiation, which we label ARIADNE2, reveals
that the only real difference lies in the choice of finite terms. Interestingly, while all the ARIADNE

radiation functions are positive definite, the equivalent ARIADNE2 one forgg → ggg is not and hence
could not be used as a basis for a shower Monte Carlo.

In modern versions of ARIADNE, gluon splitting to quarks has an additional pre-factor2/(1 +
sâb̂/sb̂ĉ), whereĉ is the neighbor on the other side of the splitting gluon. Thisis based on comparisons
to e+e− → qq̄′q′q̄ matrix elements and implies that the smaller dipole takes the larger part of theg → qq̄
branching. Such effects are not included in VINCIA at this point.

Our convention for color factors is that they count color degrees of freedom. Their normalization
should therefore be such that, in the large-NC limit, they tend toNC raised to the power of the number
of new color lines created in the splitting. In particular,

ĈF =
N2

C−1
NC

= 8
3 ,

CA = NC = 3 .
(146)

For gluon splitting to quarks, the antenna shower explicitly sums over each flavor separately, hence the
relevant antenna functions should be normalized to one flavor, T̂R = 1. (We use the hatted symbolŝCF

andT̂R to distinguish this normalization from the conventional parton-shower one in whichCF = 4/3
andTR = 1/2.)
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The complete antenna functions, in the notation of [325, eqs. (2) and (11)], are then

A(qq̄ → qgq̄) = 4παs ĈF a(qq̄ → qgq̄) ,

A(qg → qgg) = 4παs ĈF a(qg → qgg) ,
A(gg → ggg) = 4παs NC a(gg → ggg) ,
A(qg → qq̄′q′) = 4παs a(qg → qq̄′q′) ,
A(gg → gq̄q) = 4παs a(gg → gq̄q) ,

(147)

whereαs = αs(µR) may depend on the branching kinematics. If so, we use a nominal α̂s = 1 for
generating trial branchings, which are then accepted with probabilityαs(µR) at the point when the full
kinematics have been constructed (see below). The possibilities forµR currently implemented in VINCIA

are

µR =





type 0 : KR 2p⊥
type 1 : KR QE

type 2 : KR
√
sâb̂ ,

(148)

whereKR is an arbitrary constant,p⊥ is defined as in ARIADNE with p2
⊥ = sarsrb/sâb̂ [327], QE is

the evolution variable, and√sâb̂ is the invariant mass of the mother dipole-antenna. The default is a
1-loop running five-flavorαs with µR = p⊥ (i.e., Type 0 above, withKR = 1

2 ) andαs(mZ) = 0.137
(the default in PYTHIA 8, making comparisons simpler). Alternatively, both fixed and 2-loop running
options are available as well [333]. For the pure shower, thedependence on the renormalization scheme
of αs is beyond the required precision and hence we do not insist onanMS definition here. Indeed, the
default value ofαs(mZ) in PYTHIA 8 is determined from tuning to LEP event shapes. Though beyond
the scope of the present paper, we note that in the context of higher-order matching, one should settle
on a specific scheme, and should then see the dependence on both the scheme and scale choices start to
cancel as successive orders are included.

17.3 Shower implementation

Brief descriptions of the VINCIA switches and parameters are contained in the program’s XML “man-
ual”, by default calledVincia.xml, which is included together with the code. This file also contains
the default values and ranges for all adjustable parameters, which may subsequently be changed by the
user in exactly the same way as for a standard PYTHIA 8 run [333].

The default antenna functions are contained in a separate XML file, Antennae-GGG.xml. An-
tennae that are related by charge conjugation to the ones listed tab. 11 are obtained by simple swapping
of invariants (e.g.,gq̄ antennae are obtained from theqg ones). Similarly, antenna functions that are
permutations of the ones in tab. 11, such asgg → q̄qg, are obtained by swapping. In view of the prob-
abilistic nature of the shower, all antenna functions are checked for positivity during initialization. If
negative regions are found, the constant termC0,0 is increased to offset the difference and a warning is
given, stating the new value ofC0,0.

We use the PYTHIA 8 event record [333], which includes Les Houches color tags [336, 337] for
representing color connections. At every point during the event evolution, leading-color antennae are
spanned between all pairs of (non-decayed) partons for which the color tag of one matches the anti-color
tag of the other.

Shower generation proceeds largely as for the pure-gluon case described in [325], including the
choice between two evolution variables

yE =





type I (p⊥-ordering) : y2
I =

Q2
I

s
= 4

sarsrb

s2
= 4yaryrb

type II (dipole-mass-ordering): y2
II =

Q2
II

s
= 2min(yar, yrb)

. (149)
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Note that we do not include an “angular-ordering” option. Inconventional parton showers, which use
collinear splitting functions, angular ordering gives a good approximation of the coherent dipole radiation
patterns we here describe by the antenna functionsA. Since dipole-antenna showers useA directly,
coherence is thus independent of the choice of evolution variable to first order in this formulation (see,
e.g., [326]).

For the phase space map an optimal choice for the functional form of the “recoil angle”ψâa

(see [325, 327]) away from the soft and collinear limit exists for qq̄ antennae [338]. However, we have
not yet implemented this particular subtlety in the VINCIA code. The default choice for all antennae is
thus currently the same as for thegg → ggg splitting in ARIADNE [327]

ψARIADNE =
E2

b

E2
a + E2

b

(π − θab) , (150)

with alternative choices listed in [325].

Trial branchings are generated by numerically solving forytrial in the equationR = ∆̂(ytrial),
whereR is a random number uniformly distributed between zero and one, and the trial Sudakov is [325,
eq. (51)]

∆̂(ytrial) = exp

[
−
∫ 1

ytrial

dyE

∫ 1

0
dyar

∫ 1−yar

0
dyrb δ(yE − yE(yar, yrb))

Â(yar, yrb)

16π2

]
, (151)

with A an overestimate of the “true” antenna function such that

Â(yar, yrb) ≡ sarbÂ(yar, yrb; sarb, 1) > sarbA(yar, yrb; sarb, 1) (152)

only depends on the rescaled invariants (for instance by using a fixed overestimate of̂αs = 1 here). Once
the full kinematics are known (see below) the trial branching can be vetoed with probability1 − A/Â,
which by the veto algorithm changes the resulting distribution back to that ofA, as desired.

During program execution, cubic splines of∆̂ and∆̂−1 are used for the actual trial generation.
These splines are constructed on the fly, with the 2-dimensional phase space integrals in eq. (151) carried
out either by 2-dimensional adaptive Gaussian quadrature (AGQ) onÂ directly or (substantially faster)
by 1-dimensional AGQ on the primitive function along a contour of fixedyar, defined by

Ia(yar, y1, y2) =

∫ y2

y1

dyrb
Â(yar, yrb)

16π2

=
α̂sCi

4π

∞∑

α=−1

yα
ar


Cα,−1 ln

(
y2

y1

)
+

∞∑

β=0

Cα,β
yβ+1
2 − yβ+1

1

β + 1


 , (153)

whereα̂s is the overestimate ofαs discussed earlier,Ci represents the color factors appearing in eq. (147),
and the phase space limitsy1,2 depend on the choice of evolution variable, see below. During initializa-
tion, the program checks for consistency between the analytic and numeric integrals and a warning is
issued if the numerical precision test fails.

The antenna with the largest trial scale is then selected forfurther inspection. Aφ angle distributed
uniformly in [0, 2π] is generated, and a complementary phase space invariant,z, is chosen according to
the probability distribution

Iz(yE , z) =

∫ z

zmin(yE)
dz′|J(yE , z

′)| Â(yar, yrb)

16π2
, (154)

where|J(yE, z)| is the Jacobian arising from translating{yar, yrb} to {yE , z} andzmin(yE) is the small-
est valuez attains inside the physical phase space for a givenyE . Depending on the type of evolution
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variable, as defined in eq. (149), we choose{yE , z}(yar, yrb) as

type I : yE = 4yaryrb , z = yrb

⇒ |JI| = 1/(4z) , zmax,min(yE) =
1

2
(1 ±

√
1 − yE) , (155)

type II : yE = 2yar , z = yrb for z ≤ 1 − 1
2yE

yE = 2yrb , z = yar + (1 − 2yrb) for z > 1 − 1
2yE

⇒ |JII| = 1/2 , zmin(yE) =
1

2
yE , zmax(yE) = 2 − 3

2
yE (156)

where, for type II, we have arranged the two separate branches yar < yrb andyrb < yar one after
the other by a trivial parallel displacement in thez coordinate. Using the Laurent representation of the
antenna functions, the analytical forms ofIz become

type I :
α̂sCi

16π

∞∑

α=−1

(yR

4

)α


Cα,α ln

z

zmin(yE)
+
∑

β 6=α

zβ−α − zmin(yE)β−α

β − α


 (157)

type II :
α̂sCi

8π

[
Ia

(
1

2
yE , zmin(yE),min(z, 1 − zmin(yE))

)

+ IT
a

(
1

2
yE , 1 − zmin(yE),max(z, 1 − zmin(yE)

)]
, (158)

where theIa is defined in eq. (153) andIT
a is the primitive along a direction of fixedyrb

IT
a (yrb, y1, y2) =

∞∑

β=−1

yβ
rb

[
C−1,β ln

(
y2

y1

)
+

∞∑

α=0

Cα,β
yα+1
2 − yα+1

1

α+ 1

]
. (159)

17.4 Numerical results

We now turn to a quantitative comparison between PYTHIA 8 and VINCIA for e+e− → Z → qq̄ at√
s = mZ . We use a 1-loop runningαs with αs(mZ) = 0.137 (the default in PYTHIA 8), with a 5-flavor

running matched to 4 and 3 flavors at theb andc thresholds, but to eliminate the question of explicit
quark mass effects we only allowd andu quarks in theZ decay and subsequent shower evolution.
The evolution is terminated atp⊥had = 0.5 GeV, and we have switched off hadronization so as not to
unintentionally obscure the differences between the partonic evolutions. Likewise, photon radiation is
switched off in all cases, and in PYTHIA 8 we further switch off gluon polarization effects. For VINCIA ,
we use three different settings: transverse-momentum ordering with “GGG” antenna functions, dipole-
mass ordering with “GGG” antenna functions, and transverse-momentum ordering with the “ARIADNE”
antenna functions.

Fig. 31 shows the 3-, 4-, and 5-jet inclusive fractions as functions of the logarithm of DurhamkT ,
using the default PYTHIA 8 Durham clustering algorithm [333]. In PYTHIA 8, the 3-jet rate (the set of
curves furthest to the right) is matched to the tree-level 3-parton matrix element, whereas the GGG and
ARIADNE antenna functions in VINCIA reproduce it by construction. The general agreement on the 3-jet
rate is therefore a basic validation of theqq̄ → qgq̄ antenna implementation. Higher-order effects appear
to make the mass-ordered VINCIA slightly softer, which we tentatively conclude is due to this variable
favoring soft wide-angle radiation over high-p⊥ collinear radiation (as illustrated by fig. 2 in [325]).

Similarly, the 4-jet fractions (the middle set of curves in fig. 31) test theqg antennae in VINCIA ,
with the GGG showers here slightly higher and the ARIADNE one slightly lower, in agreement with the
differences inqg antenna finite terms, cf. tab. 11. This trend becomes more pronounced in the 5-jet
fraction, since also thegg → ggg function in ARIADNE is softer than GGG.
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Fig. 31: Inclusive 3-, 4-, and 5-jet fractions.

We may now study further distributions, as a representativeexample of which we take thrust,
illustrated as1 − T in the top row of fig. 32. The full distribution is shown to the left with a closeup
of the region1 − T < 0.1 to the right. The region0.1 < 1 − T < 1

3 is dominated by well-separated
three-jet configurations. In the tail,1 − T > 1

3 , a matching toe+e− → 4 jets would be required to
improve the accuracy. In the region below1 − T = 0.1, however, this would not help. These are three-
jet configurations which are “nearly two-jet”. Here, the type and size of the Sudakov suppression is
essential, the first fixed order of which could be accessed by 1-loop matching, but since the fixed-order
expansion is poorly convergent in this region anyway, the disagreement is more likely to be cured by a
systematic inclusion of higher-logarithmic effects in theshowers (either implicitly, by “clever choices”
of evolution, renormalization, and kinematic variables inthe LL shower, or explicitly, by a systematic
inclusion of NLL splittings). It should be noted, however, that hadronization and hadron decay effects
are important in the region below

1 − T ∼ 1 − max(xk) = min(yij) <∼
(A few GeV)2

m2
Z

<∼ 0.01 , (160)

where thex andy fractions pertain to 3-jet configurations. This complicates the separation of genuine
non-trivial higher-log effects from non-perturbative effects when comparing to experimental data at cur-
rently accessible collider energies.

Finally, as illustration of an infrared sensitive quantity, in the bottom row of fig. 32 we plot the
probability distribution of the number of partons producedat the shower termination for each of the
four models. The total number of partons is shown to the left and the number of quarks (not counting
anti-quarks) to the right. The definitions ofp⊥ in PYTHIA and in VINCIA /ARIADNE, respectively, are
not exactly identical, but they have the same infrared limiting behavior [339], and hence a comparison
of the number of resolved partons with a cutoff atp⊥had = 0.5 GeV should be meaningful. Since we
have also chosen the sameαs values etc., the basic agreement between the models in the lower left-
hand plot in fig. 32 reconfirms that there are no large differences between the showers, even at the
infrared sensitive level. ARIADNE produces somewhat fewer partons, consistent with the ARIADNE

radiation functions being slightly softer. On the right-hand plot, however, it is interesting to note the
first substantial difference between PYTHIA 8 and the VINCIA showers. The PYTHIA shower produces
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Fig. 32: Top row: Thrust,1 − T . Bottom row: Number of partons (left) and number of quarks (right) at shower termination,

with 2 massless quark flavors.

significantly fewer quarks than any of the VINCIA showers, despite its being higher or comparable on
the total number of partons (cf. the left-hand plot). A similar difference between parton and dipole-
antenna showers was observed in an earlier ARIADNE study [335], in which a comparison was made to
the virtuality-ordering of traditional parton showers. Itis interesting that we here observe the same trend
when comparing to the PYTHIA 8 shower which is ordered inp⊥. Finally, we note that this difference will
also have practical consequences; in the context of tuning of hadronization models, the VINCIA showers
will presumably need a stronger suppression of non-perturbative strangeness production to make up for
the larger perturbative production rate, as compared to PYTHIA 8.

17.5 Conclusions

We have presented the inclusion of massless quarks into the VINCIA shower algorithm, implemented as a
plug-in to the PYTHIA 8 event generator. The dipole-antenna radiation functionsare expressed as double
Laurent series in the branching invariants, with user-specifiable coefficients. At the analytical level,
we compare the coefficients of the “GGG” antenna functions [315] used by default in VINCIA to the
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ARIADNE ones [327]. Modulo a re-parameterization of emissions fromgluons, we find the double and
single log coefficients to be identical, as expected. The finite terms, however, are generally somewhat
smaller for the ARIADNE functions. This represents a genuine shower ambiguity which can only be
systematically addressed by matching to fixed-order matrixelements.

At the phenomenological level, we have also compared to the hybrid parton-dipole shower in
PYTHIA 8 [333] fore+e− → Z → qq̄ at

√
s = mZ . We find a good overall agreement, even at the level

of an infrared sensitive quantity such as the final number of partons. For the number of quarks produced,
however, PYTHIA 8 is markedly lower than any of the VINCIA showers we have compared to here.
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18. LLL SUBTRACTION AND PS KINEMATICS 31

18.1 Introduction

We are developing NLO event generators for hadron collisioninteractions based on GRACE [340], using
the Limited Leading-Log (LLL) subtraction technique [341]for the parton radiation matching. The
matching technique is crucial since the contributions of anadditional QCD parton radiation in NLO are
also involved in the evolution of Parton Distribution Functions (PDFs) in a collinear approximation. A
naive application of a PDF to NLO calculations results in an apparent double-counting. We avoid the
double-counting by subtracting Leading-Log (LL) collinear contributions from the matrix element (ME)
of radiative processes. The subtraction is stopped (”limited”) at the factorization scale (µF ) since PDFs
do not involve any radiation harder than this energy scale. The LL contribution of the radiation is easy
to calculate [342], though an appropriate care is necessaryin the kinematical mapping to non-radiative
processes [341]. The subtracted LL terms are formally movedto non-radiative processes and to be
cancelled with divergences in virtual corrections.

Figure 33 shows the sum of the total cross sections for inclusiveW -boson production and LLL-
subtractedW + 1 jet production evaluated for the LHC condition (proton-proton collisions at

√
s = 14

TeV). Here, ”jet” denotes a gluon or a light quark in the final state. The cross sections are calculated
using the tree-level MEs forW production andW + 1 jet production, respectively, convoluted with the
CTEQ5L PDF [343]. Results are shown as a function of the factorization scale (µF ). We can see a strong
µF dependence of the inclusiveW production cross section (open circles) is greatly reducedby adding
the LLL-subtracted radiative cross section. This shows a good matching between the ME and PDF;i.e.,
the LL contents in ME and PDF are nearly the same.

The virtual corrections are yet to be included in the resultsshown in Fig. 33. They can also be
evaluated automatically in the framework of GRACE [342]. Divergent terms in these corrections are to be
cancelled with those moved from radiative processes. Remaining finite terms will alter the normalization
of non-radiative processes, and will result in a substantial mismatch since there is no such correction
in radiative processes. However, this mismatch is at the level of NNLO. It will be possible to restore
the matching within the accuracy of NLO. The simplest way would be to change the normalization of
LL components of the hard radiation remaining in radiative processes by the same amount as applied to
non-radiative processes. This is actually a modification atthe NNLO (α2

s) level.

So far we have discussed the matching in the integrated crosssection. We have to achieve a good
matching in differential cross sections, as well, in order to construct practical event generators. The QCD

31Contributed by: S. Odaka
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Fig. 33: Factorization-scale (µF ) dependence of the total cross section for theW -boson production at LHC. An apparent

µF dependence of the inclusiveW (W + 0 jet) production cross section (open circles) is greatly reduced when we add the

LLL-subtractedW + 1 jet production cross section. The summed cross sections are shown with filled circles.

evolution evaluated in PDFs is simulated by means of a partonshower (PS) in event generators for hadron
collisions. PS and PDF are based on the same factorization theory. However, since theoretical arguments
are given only at the collinear limit, the theory gives us predictions only at the first-order approximation
for the transverse behavior. It is necessary to introduce a model of 3-dimensional kinematics in order
to construct a practical PS conserving the energy and momenta. The introduction of a suitable model is
crucial for achieving a good matching in differential crosssections. We discuss about such models in the
following sections.

18.2 Initial-state PS kinematics

We have constructed an initial-state Leading-Log (LL) PS program for the use in NLO event generation.
The program is based on the simplest expression of the LL Sudakov form factor employingQ2 as the
evolving parameter,

S(Q2
1, Q

2
2) = exp

[
−
∫ Q2

2

Q2
1

dQ2

Q2

∫ 1−ǫ

ǫ
dz

αs(Q
2)

2π
P (z)

]
. (161)

The details are described in our paper [341]. We stay in a naive LL implementation without introducing
corrections partially incorporating higher order effects, such as the angular ordering, because we plan to
extend our PS to a true Next-to-Leading-Log (NLL) approximation [344].

We first tested the kinematics model employed in the ”old” PYHTIA-PS [345, 346], since the
theoretical bases is nearly the same. We found this model gives a very soft transverse activity. It results
in an apparent mismatch in the transverse momentum (pT ) distribution ofW bosons, when we tried to
merge the inclusiveW production with the LLL-subtractedW + 1 jet production by applying this PS to
both processes. The starting assumptions of the ”old” PYHTIA-PS kinematics are that thez parameter
of a branch is the ratio of squared cm energies after and before each branch instead of the fraction of
light-cone momenta, and that theQ2 is identical to the virtuality of the evolving partons. The first
assumption requires the definition of a ”target” parton; thus, it is model dependent. However, thisz
definition ensures a simple relation between squared cm energies of a hard interaction and the beam
collision; shard = x1x2sbeam wherex1 andx2 are given by the product of allz values in each beam.
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Fig. 34: Sum of the simulatedpT spectra ofW bosons for the inclusiveW production and the LLL-subtractedW + 1 jet

production at LHC. The newpT -prefixed PS described in the text is applied to both processes. Results are plotted for three

different choices ofµF : µF /mW = 0.5 (open circles), 1.0 (filled circles) and 1.5 (open squares).

From a simple kinematical argument we found this model givesa relation,

p2
T = (1 − z)2Q2, (162)

for each branch at the soft limit [341].

On the other hand, ordinary arguments based on the massless approximation give a slightly differ-
ent relation,

p2
T = (1 − z)Q2 (163)

at the soft limit. Apparently Eq. (162) gives a smallerpT value than Eq. (163) for a given set ofQ2 and
z. The relation (163) must be better for the matching since external partons are nearly massless in ME
calculations. We have introduced a new kinematics model wherepT of each branch is given (”prefixed”)
by Eq. (163). We keep the definition of thez parameter. The momenta of evolving partons are calculated
from thispT value and thez value. Thus, the virtuality is not necessarily equal to theQ2 of a branch. This
new PS gives a harderW -bosonpT spectrum than the ”old” PYTHIA-PS in the inclusiveW production
simulation, showing a better matching to the LLL-subtractedW + 1 jet simulation. The sum of the two
simulations gives a smoothpT spectrum stable against a variation of the factorization scale (µF ) [341].

After the submission of the paper [341] we tried another definition of the ”prefixed”pT ,

p2
T = (1 − z −Q2/ŝ)Q2. (164)

The parameter̂s is the squared cm energy before the branch. This is the resultof the massless approxi-
mation of branching kinematics before taking the soft limit(Q2/ŝ→ 0). This definition is ugly in some
sense sincês is model dependent, but gives us a better matching than Eq. (163). We plot the summedpT

spectra ofW -bosons for three differentµF values (µF/mW = 0.5, 1.0 and 1.5) in Fig. 34. We can see
almost no variation of the spectrum except for a small difference aroundpT = mW in thisµF range.

18.3 Prospects for the final-state PS matching

It is enough to consider the initial-state matching if we consentrate ourselves to NLO corrections for
color singlet or heavy particle productions. However, oncewe go to NLO for those processes having a
gluon or a light quark (”jet”) in the final state, we also need to consider the matching in the final state.
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We plan to use a simple LL parton shower employingQ2 as the evolving parameter also for the
final state. We need to introduce an appropriate kinematics model to this PS, too. In the initial-state PS,
models in which the definition ofpT precedes that ofQ2 give us a better matching as we have discussed in
the previous section. This is becausepT is in principle an observable quantity whileQ2 is not physically
well-defined for initial-state partons. Similar argumentsshould be done also for the final state.

In the final state, the virtuality is in principle an observable as an invariant mass of particles even
after the hadronization and decays. Therefore, it must be natural to identifyQ2 as the virtuality of the
evolving partons. The transverse momentum (pT ) is also an observable in principle. Thus,z should
be treated as an unphysical parameter. It should be used as a hidden parameter only to givepT values
according to the relation,

p2
T = z(1 − z)Q2. (165)

In this kinematics model, PS is a process to give final-state partons additional masses equal to theQ2 of
their first branches. The invariant mass of the hard interaction system should be unchanged even after
the application of PS, since it is a very fundamental parameter for the evaluation of matrix elements. We
also want to keep the production angles in the cm frame unchanged. These requirements can be fulfilled
by introducing a common multiplication factor to the momenta of all final-state particles.

We need to apply a proper mapping of non-radiative subsystemin a radiative event to an on-shell
non-radiative event in the LL subtraction. A mapping using momenta of the branched parton and the
target parton works well for the initial-state radiation [341]. The subsystem is boosted and rotated to its
cm frame where the momenta of two incoming partons are aligned along thez axis. This is the process
exactly reversing the kinematical rearrangement in our initial-state PS.

The mapping should be done in the same concept also in the finalstate, exactly reversing the
rearrangement in PS. It can be done as follows: pick up an arbitrary pair of final-state partons. If they
can be considered as products of a PS branch, replace them with the parent parton having the invariant
mass of the pair as its virtuality (Q2). If not, skip this pair. Rescale the momenta of all particles in
the cm frame with a common factor to make the replaced parent parton become on-shell. Evaluate the
matrix element of the non-radiative process based on these rearranged momenta, multiply it with the LL
radiation factor proportional to1/Q2, then we get an LL approximation of a final-state radiation. This
procedure should be applied to all possible combinations ifwe have more than two partons in the final
state.

We expect that the LL contribution can be evaluated in such a systematic way, including the initial-
state contributions, as well. All contributions should be summed to evaluate the total LL contribution. A
program is under development based on these concepts.

18.4 Conclusions

We have achieved a good matching between PDF and matrix-element (ME) evaluations for the parton
radiation in NLO QCD corrections, by using the Limited Leading-Log (LLL) subtraction technique. It
has been demonstrated as a good stability of theW production cross section against a variation of the
factorization scale (µF ), where the total cross section is evaluated by the sum of thecross sections for
inclusiveW production and the LLL-subtractedW + 1 jet production.

We have to achieve a good matching between the parton shower (PS) and ME, as well, in order
to construct practical NLO event generators. The transverse activity of PS depends on the applied kine-
matics model of parton branches. We have successfully builta suitable model for our Leading-Log (LL)
initial-state PS, wherepT is prefixed according to the relation in the massless approximation of branch-
ing kinematics. The simulation employing this PS shows a good matching between the inclusiveW
production and the LLL-subtractedW + 1 jet production in thepT spectrum ofW bosons. The spectrum
is stable against the variation ofµF in a wide range.

97



It is necessary to achieve a good PS-ME matching for the final-state radiation, as well, when we
construct NLO event generators for those processes including ”jet(s)” in the final state. A study is in
progress for the final state based on the experience on the initial-state radiation.

Acknowledgements

This work has been carried out as an activity of the NLO Working Group, a collaboration between the
Japanese ATLAS group and the numerical analysis group (Minami-Tateya group) at KEK. The author
wishes to acknowledge useful discussions with the members:Y. Kurihara, J. Kodaira, J. Fujimoto, T.
Kaneko and T. Ishikawa of KEK, and K. Kato of Kogakuin University.

19. A PARTON-SHOWER MODEL BASED ON CATANI–SEYMOUR DIPOLE FA CTORISA-
TION 32

19.1 Introduction

Parton-shower models form an indispensable building blockof Monte Carlo event generators, such as
Herwig [347], Pythia [348] and Sherpa [219], that aim at the realistic description of multi-particle final
states as they are observed in high-energy collider experiments. By accounting for QCD bremsstrahlung
processes, parton showers relate a small number of partons emerging from a hard interaction, defined
at scaleQhard and theoretically described through a fixed order calculation, to a larger set of partons
at scalesQo ≪ Qhard. The parton-shower approach relies on the universal pattern of QCD emission
processes once soft or collinear parton kinematics are considered. The soft and collinear phase-space
regions are singular and obtain large corrections order by order in perturbation theory what makes an
all-orders resummation of the associated kinematical logarithms essential. Most shower algorithms rely
on collinear factorisation of QCD matrix elements and are accurate to the leading-logarithmic level. The
Ariadne approach, however, is based around the soft limits [327].

The parton-shower approach being perturbative it cannot beextended to arbitrary small scales but has
to be stopped at some infrared cut-off scaleQo ≥ ΛQCD. Below that scale event generators model the
transition of QCD partons into the experimentally observedhadrons through non-perturbative hadronisa-
tion models. In fact, only through the incorporation of parton showers these hadronisation models can be
made universal or independent of the underlying hard process. This, however, assumes that perturbative
QCD between scalesQhard andQo is appropriately described by the parton-shower model used.

In the past few years there have been lots of major improvements related to parton-shower Monte Carlos.
This includes the incorporation of exact multi-leg tree-level matrix elements for the description of the
first few hardest emissions from a given hard process, know as“matrix element parton shower merging”,
see e.g. [349,350], or the consistent matching of next-to-leading order calculations with parton showers,
know as “Monte Carlo at NLO”, see for instance [35, 351]. In addition the available shower algorithms
of Herwig and Pythia have been revised and improved [339,352].

Only very recently new shower algorithms emerged that are based on formalisms used to construct sub-
traction terms that allow for a numerical cancellation of infrared singularities in NLO QCD calcula-
tions [325, 328–331, 353]. There exist now implementationsof such shower algorithms for two com-
monly used subtraction schemes, the antenna subtraction method [312] and the Catani–Seymour dipole
formalism [165, 354]. Besides incorporating the last knowledge on the infrared behaviour of QCD ma-
trix elements, these models should largely facilitate the matching with NLO calculations carried out in
the respective scheme. In this note we briefly report on the construction of a parton-shower algorithm
relying on Catani–Seymour subtraction that has more extensively been presented in [329].

32Contributed by: S. Schumann, F. Krauss
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19.2 The shower model

The Catani–Seymour formalism provides all the ingredientsto construct a local approximation to the
real-correction matrix element inanyQCD NLO calculation. These subtraction terms, that can be con-
structed in a process-independent way, possess exactly thesame infrared divergences as the real-emission
correction, such that the difference of the two is infrared finite and can safely be (numerically) integrated
in four dimensions. In addition, the subtraction terms are chosen such, that they can be analytically inte-
grated ind = 4−2ǫ dimensions over the phase space of the produced soft or collinear parton that causes
the divergences. The occurring1/ǫ2 and1/ǫ poles exactly cancel the ones from the loop integration in
the virtual part when adding the two pieces. Such, the Catani–Seymour method provides a way to con-
struct a parton-level Monte Carlo program for a NLO calculations once the one-loop and real-emission
corrections to the Born process are known.

In the Catani–Seymour approach the additional soft or collinear parton is emitted from an emitter-
spectator pair (called dipole). Considering both the emitter and the spectator to be either in the final
or initial state, four configurations have to be considered,representing the singularities associated to
emissions from the final or initial state. Labelling final-state particles byi, j andk and initial-state par-
tons bya andb the real-emission matrix element can always be approximated by the sum over all the
possible dipoles,

|Mm+1|2 =
∑

i,j

∑

k 6=i,j

Dij,k +


∑

i,j

Da
ij +

∑

i

∑

k 6=i

Dai
k +

∑

i

Dai,b + (a↔ b)


 . (166)

Hereby,Dij,k describe splittings of a final-state partonĩj into the pairi, j accompanied by a spectator
k. Due to the presence of the spectator, four-momentum conservation and on-shell momenta can be
accomplished locally for each individual splitting. The termsDa

ij represent final-state splittings with an
initial-state spectator, whileDai

k andDai,b correspond to a splitting initial-state line accompanied by a
final- and initial-state parton, respectively. The individual dipole terms are constructed from the Born
matrix element by inserting colour- and spin-dependent operators that describe the actual splitting. For
massless final-state emitters and final-state spectators, for instance, the dipole contributions read

Dij,k = − 1

2pipj
〈m 1, . . . , ĩj . . . , k̃, . . . |Tk · Tij

T2
ij

Vij,k|1, . . . , ĩj . . . , k̃, . . . 〉m . (167)

TheTij andTk thereby denote the colour charge operators of the emitter and spectator, respectively, they
lead to colour correlations in the full amplitude. TheVij,k ared-dimensional matrices in the emitter’s
spin space that induce spin correlations.

For the construction of a parton-shower algorithm from the dipole formula Eq. (166) certain approxima-
tions are needed that finally allow for an exponentiation of the splitting operators to derive the Sudakov
form factors central for a shower implementation. In addition, the splitting kinematics, choices on scale
settings and the actual shower-ordering parameter have to be fixed.

19.2.1 Shower construction criteria

The full colour correlations present in the|Mm+1|2 matrix element have to be discarded in the shower
picture, instead the leading terms in1/Nc are considered only33. In this approximation a colour flow
can be assigned to each parton configuration. Motivated by considerations on the colour dynamics for
soft emissions, we choose the emitter and spectator to be colour connected in the shower formalism. The
colour-charge operators simplify to

−Tk · Tij

T2
ij

→ 1

N spec
ij

, (168)

33Although formally subleading, we consider splittings of the typeg → qq̄ as well
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with N spec
ij = 1, 2 in case the emitter has one (SU(3) (anti-)triplet) or two (SU(3) octet) possible spec-

tators. The four-dimensional dipole functionsV are used as the shower splitting functions. Furthermore,
we neglect spin correlations by using spin-averaged splitting functions〈V〉 34.

As shower evolution variable we choose the transverse momentum between the splitting products for
branching final-state partons and the transverse momentum with respect to the beam for emissions from
the initial state, collectively denoted byk⊥. This scale is also employed as the scale of the running
coupling and the parton distributions, once initial-statepartons are present.

Based on the above approximations and choices Sudakov form factors corresponding to the different
types of Catani–Seymour dipoles can be derived, that determine the probability for a certain branching
not to occur for a given range of the evolution variable. The four generic cases are briefly reviewed in the
following. For simplicity, here we consider massless partons only, the massive case is discussed in [329].

19.2.2 Final-state emitter – final-state spectator

Consider the final-state splitting{ĩj, k̃} → {i, j, k} with the four-momentum constraint̃pij + p̃k =
pi + pj + pk ≡ Q and all momenta being on their mass-shell. The branching canbe characterised by the
Lorentz invariant variables

yij,k =
pipj

pipj + pipk + pjpk
, z̃i = 1 − z̃j =

pipk

pipk + pjpk
. (169)

The factorised form of the fully differential(m + 1)-parton cross section that exactly reproduces the
corresponding soft and collinear divergences of the real-emission process reads

dσ̂m+1 = dσ̂m

∑

ij

∑

k 6=ij

dyij,k

yij,k
dz̃i

dφ
2π

αs

2π

1

N spec
ij

(1 − yij,k)〈Vij,k(z̃i, yij,k)〉 . (170)

The spin-averaged splitting kernels〈Vij,k〉 for the branchingsq → qg, g → gg andg → qq̄ read

〈Vqigj ,k(z̃i, yij,k)〉 = CF

{
2

1 − z̃i + z̃iyij,k
− (1 + z̃i)

}
, (171)

〈Vgigj ,k(z̃i, yij,k)〉 = 2CA

{
1

1 − z̃i + z̃iyij,k
+

1

z̃i + yij,k − z̃iyij,k
− 2 + z̃i (1 − z̃i)

}
, (172)

〈Vqiqj ,k(z̃i)〉 = TR {1 − 2z̃i (1 − z̃i)} . (173)

In terms of the splitting variables the transverse momentumbetween the splitting productsi andj (our
shower evolution variable) can then be written as

k2
⊥ = 2p̃ij p̃k yij,k z̃i (1 − z̃i) , (174)

and accordingly

dyij,k

yij,k
=

dk2
⊥

k2
⊥

. (175)

Setting the infrared shower cut-off equal tok2
⊥,0 and the upper limit tok2

⊥,max the z̃i integration is
constrained to

z∓(k2
⊥,max,k

2
⊥,0) =

1

2


1 ∓

√√√√1 −
k2
⊥,0

k2
⊥,max


 . (176)

34Some of the dipole functions can become negative in non-singular phase-space region, prohibiting a simple probabilistic
interpretation. We choose to set them to zero in these cases.
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The kinematics of the splitting are fixed through

pi = z̃i p̃ij +
k2
⊥

z̃i 2p̃ij p̃k
p̃k + k⊥ , (177)

pj = (1 − z̃i) p̃ij +
k2
⊥

(1 − z̃i) 2p̃ij p̃k
p̃k − k⊥ , (178)

pk = (1 − yij,k) p̃k , (179)

with k⊥ the spacelike transverse-momentum vector perpendicular to p̃ij andp̃k andk⊥ ·k⊥ = −k2
⊥. The

Sudakov form factor for having no final-state splitting witha final-state spectator betweenk2
⊥,max and

k2
⊥,0 reads

∆FF(k2
⊥,max,k

2
⊥,0)

= exp


−

∑

ij

∑

k 6=ij

1

N spec
ij

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

z+∫

z−

dz̃i
αs(k

2
⊥)

2π
(1 − yij,k)〈Vij,k(z̃i, yij,k)〉


 . (180)

19.2.3 Final-state emitter – initial-state spectator

In the presence of initial-state partons a final-state splitter may be colour connected to one of the incoming
lines. We consider the splitting{ĩj, ã} → {i, j, a}, with p̃ij − p̃a = pi + pj − pa ≡ Q . This time the
branching is parameterised by the quantities

xij,a =
pipa + pjpa − pipj

pipa + pjpa
, z̃i = 1 − z̃j =

pipa

pipa + pjpa
. (181)

The relative transverse momentum of the new emerging final-state partons is given by

k2
⊥ = 2p̃ap̃ij

1 − xij,a

xij,a
z̃i (1 − z̃i) . (182)

The derived Sudakov form factor for this splitting type reads

∆FI(k
2
⊥,max,k

2
⊥,0)

= exp


−

∑

ij

∑

a

1

N spec
ij

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

z+∫

z−

dz̃i
αs(k

2
⊥)

2π

fa(ηa/xij,a,k
2
⊥)

fa(ηa,k2
⊥)

〈Va
ij(z̃i, xij,a)〉


 .

(183)

Here,ηa is the momentum fraction of the spectator partona andfa(ηa,k
2
⊥) the corresponding hadronic

PDF evaluated at some scaleµ2
F = k2

⊥. The parton-distribution functionfa(ηa/xij,a,k
2
⊥) accounts for

the new incoming momentum. Thẽzi integration boundaries are given by Eq. (176) and the concrete
splitting functions,〈Va

ij(z̃i, xij,a)〉, can be found in Ref. [329]. The branching kinematics are fixed to

pi = z̃i p̃ij +
k2
⊥

z̃i 2p̃ij p̃a
p̃a + k⊥ , (184)

pj = (1 − z̃i) p̃ij +
k2
⊥

(1 − z̃i) 2p̃ij p̃a
p̃a − k⊥ , (185)

with k⊥ perpendicular to both the emitter and the spectator momentum. The new spectator momentum
is given by

pa =
1

xij,a
p̃a . (186)
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19.2.4 Initial-state emitter – final-state spectator

Once a final-state line is colour connected to the initial state, besides the situation discussed in
Sec. 19.2.3, the reversed case occurs as well. Namely, the initial-state line can split and emit a new
final-state parton while the spectator is in the final state. The momentum-conservation condition for such
a branching{ãi, k̃} → {a, i, k} readsp̃k − p̃ai = pi + pk − pa ≡ Q . The splitting variables are defined
as

xik,a =
pipa + pkpa − pipk

pipa + pkpa
, ui =

pipa

pipa + pkpa
, (187)

and the transverse-momentum squared of partoni with respect to the beam becomes

k
2
⊥ = 2p̃aip̃k

1 − xik,a

xik,a
ui(1 − ui) . (188)

The Sudakov form factor associated with this splitting typereads

∆IF(k2
⊥,max,k

2
⊥,0)

= exp


−

∑

ai

∑

k

1

N spec
ai

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

x+∫

x−

dxik,a
αs(k

2
⊥/4)

2π
J̃(xik,a, ui;k

2
⊥) 〈Vai

k (xik,a, ui)〉


 ,

(189)

with x− = ηai andx+ = Q2/(Q2 + 4k2
⊥,0) and

J̃(xik,a, ui;k
2
⊥) =

1 − ui

1 − 2ui

1

xik,a

fa(ηai/xik,a,k
2
⊥)

fai(ηai,k2
⊥)

, (190)

accounting for a possible flavour change of the incoming linethrough the backward-evolution step. The
complete list of splitting kernels can again be found in Ref.[329]. The branching kinematics are given
by

pa =
1

xik,a
p̃ai , (191)

pi = (1 − ui)
1 − xik,a

xik,a
p̃ai + ui p̃k + k⊥ , (192)

pk = ui
1 − xik,a

xik,a
p̃ai + (1 − ui) p̃k − k⊥ . (193)

19.2.5 Initial-state emitter – initial-state spectator

The last case to be considered is the splitting of an initial-state line that is colour connected to the second
incoming parton. The branching is parametrised through

xi,ab =
papb − pipa − pipb

papb
, ṽi =

pipa

papb
, (194)

such that the transverse-momentum squared of the new final-state parton becomes

k2
⊥ = 2p̃aipb ṽi

1 − xi,ab − ṽi

xi,ab
. (195)
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The Sudakov form factor of this configuration reads

∆II(k
2
⊥,max,k

2
⊥,0)

= exp


−

∑

ai

∑

b6=ai

1

N spec
ai

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

x+∫

x−

dxi,ab
αs(k

2
⊥/4)

2π
J̃(xi,ab, ṽi;k

2
⊥) 〈Vai,b(xi,ab)〉


 ,

(196)

with

J̃(xi,ab, ṽi;k
2
⊥) =

1 − xi,ab − ṽi

1 − xi,ab − 2ṽi

1

xi,ab

fa(ηai/xi,ab,k
2
⊥)

fai(ηai,k2
⊥)

, (197)

andx− = ηai andx+ = 2p̃apb/(2p̃apb + 4k2
⊥,0). For the kinematics of the emission process it is

convenient to keep the spectator momentum fixed and to align the new incoming partona with the old
incoming momentum according topa = 1/xi,ab · p̃ai. The momentum of the newly emerged final-state
partoni, is given by

pi =
1 − xi,ab − ṽi

xi,ab
p̃ai + ṽi pb + k⊥ . (198)

Its transverse momentum has to be balanced by the entire set of final-state particles of them-parton
process (including all non-QCD particles).

19.2.6 The algorithm

Having at hand factorised expressions for all possible emission processes and corresponding Sudakov
form factors a probabilistic shower algorithm of independent emissions can be formulated. The start
seed forms a2 → 2 core event with fixed colour flow and a process dependent shower start scalek2

⊥,max.

1. The scale of the next emission is chosen according to the Sudakov form factors of all contributing
emitter–spectator pairs. The dipole that yields the highest transverse momentum is picked to split.

2. The value of the second splitting variable is chosen according to the splitting kernel.

3. The splitting kinematics are determined, the new particle is inserted and the colour flow gets
adapted.

4. Start from step 1 as long ask2
⊥ > k2

⊥,0 and replacek2
⊥,max by the transverse momentum of the

last splitting.

This yields a chain of subsequent emissions strictly ordered in transverse momenta. There is no formal
subdivision of initial and final state evolution, instead, all dipoles are treated on equal footing.

19.3 Comparison with experimental data

The ultimate test of a theoretical model is a direct comparison with experimental measurements. Here
we compare the newly developed and implemented parton-shower algorithm (called CS shower in the
following) with some experimental data on hadron production in e+e− annihilation, and Drell-Yan and
jet production inpp̄ collisions. Therefore the shower simulation has been supplemented with the string
fragmentation routines of Pythia-6.2 [355] to account for hadronisation.

We begin with some of the most precisely measured quantities, event-shape observables ine+e− an-
nihilation at theZ0 pole. Fig. 19.3 contains a comparison for the normalised 1-Thrust (1 − T ) and
C-parameter (C) distributions with LEP1 Delphi data [356]. Both observables obtain large higher-order
corrections for two-jet like events that appear as1− T ≈ 0 andC ≈ 0. In addition, there is a singularity
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Fig. 35: The event-shape variables 1-Thrust(1 − T ) and C-parameter(C) in comparison with Delphi LEP1 data [356].

in the C-parameter also in the regionC ≈ 0.75 that requires a resummation of large kinematical loga-
rithms [320,357]. The CS shower yields a good agreement withthe experimental data. Only very pencil
like events, that are sensitive to hadronisation corrections, are overestimated in the Monte Carlo. We
believe that this can be improved through a more detailed tuning of the hadronisation model parameters.

In Fig. 19.3 we present the predictions of our model for the lepton-pair transverse-momentum distri-
bution in Drell-Yan production and for the azimuthal decorrelation of inclusive dijet events inpp̄ colli-
sions. Both observables are nontrivial only if additional QCD radiation is produced and thereby test the
emission pattern of the shower ansatz. We observe a good agreement with data for both observables in
phase-space regions dominated by rather soft or collinear emissions but the agreement outside this range,
i.e. largepZ

T or small∆φdijet, is also very satisfactory.

19.4 Conclusions

We have presented a new parton-shower algorithm that uses fully factorised versions of the Catani–
Seymour dipole functions to describe multi-parton production processes in a probabilistic manner. The
model encodes exact four-momentum conservation on the level of each individual splitting due to the
notion of splitting emitter–spectator pairs. Subsequent emissions are ordered in transverse momenta and
the evolution of initial- and final-state partons is done in aunified way. Comparison with experimental
data yields very encouraging results. In a next step we will combine this new shower approach with exact
multi-leg tree-level matrix elements. Moreover, this model should facilitate a matching with exact NLO
QCD calculations.
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[336] E. Booset. al., hep-ph/0109068.

[337] J. Alwall et. al., Comput. Phys. Commun.176(2007) 300–304, [hep-ph/0609017].

[338] R. Kleiss,Phys. Lett.B180(1986) 400.

[339] T. Sjostrand and P. Z. Skands,Eur. Phys. J.C39 (2005) 129–154, [hep-ph/0408302].

[340] T. Ishikawaet. al.,, MINAMI-TATEYA group Collaboration. KEK-92-19.

[341] S. Odaka and Y. Kurihara,Eur. Phys. J.C51 (2007) 867–873, [hep-ph/0702138].

[342] Y. Kuriharaet. al., Nucl. Phys. Proc. Suppl.157(2006) 231–235.

[343] H. L. Lai et. al.,, CTEQ CollaborationEur. Phys. J.C12 (2000) 375–392,
[hep-ph/9903282].

[344] H. Tanaka,Prog. Theor. Phys.110(2003) 963–973.

[345] T. Sjostrand,Phys. Lett.B157(1985) 321.

[346] M. Bengtsson, T. Sjostrand, and M. van Zijl,Z. Phys.C32 (1986) 67.

[347] G. Corcellaet. al., JHEP01 (2001) 010, [hep-ph/0011363].

[348] T. Sjostrandet. al., Comput. Phys. Commun.135(2001) 238–259, [hep-ph/0010017].

[349] S. Catani, F. Krauss, R. Kuhn, and B. R. Webber,JHEP11 (2001) 063, [hep-ph/0109231].

[350] J. Alwall et. al., arXiv:0706.2569 [hep-ph].

[351] S. Frixione, P. Nason, and C. Oleari,JHEP11 (2007) 070, [arXiv:0709.2092 [hep-ph]].

[352] S. Gieseke, P. Stephens, and B. Webber,JHEP12 (2003) 045, [hep-ph/0310083].

[353] Z. Nagy and D. E. Soper,JHEP10 (2005) 024, [hep-ph/0503053].

[354] S. Catani, S. Dittmaier, M. H. Seymour, and Z. Trocsanyi, Nucl. Phys.B627(2002) 189–265,
[hep-ph/0201036].

[355] T. Sjostrand, L. Lonnblad, and S. Mrenna,hep-ph/0108264.

[356] P. Abreuet. al.,, DELPHI CollaborationZ. Phys.C73 (1996) 11–60.

[357] S. Catani and B. R. Webber,JHEP10 (1997) 005, [hep-ph/9710333].

[358] A. A. Affolder et. al.,, CDF CollaborationPhys. Rev. Lett.84 (2000) 845–850,
[hep-ex/0001021].

[359] V. M. Abazovet. al.,, D0 CollaborationPhys. Rev. Lett.94 (2005) 221801,
[hep-ex/0409040].

119


